findthe length of a chordwhich is at a distance of 12cm from the center of a circle of radius 13cm. About the author Parker
Answer: OA2 = OM2 + AM2 ⇒ 132 = 122 + AM2 ⇒ AM2 = 169 – 144 = 25 ⇒ AM = 5cm. As the perpendicular from the centre of a chord bisects the chord.Therefore, AB = 2AM = 2 x 5 = 10cm Reply
Answer: Given: A circle C(O,r) in which: AB is a chord. Distance of AB from the centre= 12cm Radius = r= 13 cm To find: The length of AB Construction: Join OA= radius=r= 13 cm Draw OE ⊥ AB such that OE= 12 cm (given) Proof: In circle C(O,r), ΔOEA is a right triangle, right angled at E. [By construction, OE ⊥ AB] ∴ By Pythagoras theorem in ΔOEA, [tex]OA^{2}= OE^{2} + AE ^{2}[/tex] ⇒ [tex]13^{2} = 12^{2} + AE ^{2}[/tex] ⇒ 169= 144 + [tex]AE ^{2}[/tex] ⇒ 169- 144 = [tex]AE ^{2}[/tex] ⇒[tex]AE ^{2}[/tex]= 25 ⇒ AE= [tex]\sqrt{25}[/tex] ⇒ AE= 5 cm Now, AB= 2AE [Perpendicular drawn from the centre to a chord, bisects the chord] ∴ AB= 2(5) cm ⇒ AB= 10 cm Hence, the length of chord AB= 10 cm P.F.A the figure drawn below: Hope you got that. Thank You Reply
Answer:
OA2 = OM2 + AM2
⇒ 132 = 122 + AM2
⇒ AM2 = 169 – 144 = 25 ⇒ AM = 5cm.
As the perpendicular from the centre of a chord bisects the chord.Therefore,
AB = 2AM = 2 x 5 = 10cm
Answer:
Given:
A circle C(O,r) in which:
To find: The length of AB
Construction:
Proof:
In circle C(O,r),
ΔOEA is a right triangle, right angled at E. [By construction, OE ⊥ AB]
∴ By Pythagoras theorem in ΔOEA,
[tex]OA^{2}= OE^{2} + AE ^{2}[/tex]
⇒ [tex]13^{2} = 12^{2} + AE ^{2}[/tex]
⇒ 169= 144 + [tex]AE ^{2}[/tex]
⇒ 169- 144 = [tex]AE ^{2}[/tex]
⇒[tex]AE ^{2}[/tex]= 25
⇒ AE= [tex]\sqrt{25}[/tex]
⇒ AE= 5 cm
Now, AB= 2AE [Perpendicular drawn from the centre to a chord,
bisects the chord]
∴ AB= 2(5) cm
⇒ AB= 10 cm
Hence, the length of chord AB= 10 cm
P.F.A the figure drawn below:
Hope you got that.
Thank You