Find the derivative of a^x w.r.t.x (a>0) using first principle (from the definition).​

Find the derivative of a^x w.r.t.x (a>0) using first principle (from the definition).​

About the author
Adalynn

1 thought on “Find the derivative of a^x w.r.t.x (a>0) using first principle (from the definition).​”

  1. [tex]\large\underline{\sf{Solution-}}[/tex]

    [tex]\rm :\longmapsto\:Let \: f(x) = {a}^{x} [/tex]

    So,

    [tex]\rm :\longmapsto\ \: f(x + h) = {a}^{x + h} [/tex]

    Now,

    By using definition, we have

    [tex]\rm :\longmapsto\:f'(x) = \lim_{h \to 0}\dfrac{ {a}^{x + h} – {a}^{x} }{h} [/tex]

    [tex] \rm \: \: = \: \lim_{h \to 0}\dfrac{ {a}^{x} \times {a}^{h} – {a}^{x} }{h} [/tex]

    [tex] \rm \: \: = \: \lim_{h \to 0}\dfrac{ {a}^{x}({a}^{h} – 1)}{h} [/tex]

    [tex] \rm \: \: = \: {a}^{x} \lim_{h \to 0}\dfrac{ {a}^{h} – 1 }{h} [/tex]

    [tex] \rm \: \: = \: {a}^{x} \times log(a) [/tex]

    [tex] \: \: \: \: \red{\bigg \{ \because \: \lim_{x \to 0}\dfrac{ {a}^{x} – 1}{x} = log(a) \bigg \}}[/tex]

    [tex] \rm \: \: = \: {a}^{x} log(a) [/tex]

    Hence,

    [tex]\bf\implies \:\dfrac{d}{dx} {a}^{x} = {a}^{x} log(a) [/tex]

    Additional Information :-

    [tex]\green{\boxed{ \bf{ \:\lim_{x \to 0 \: }\dfrac{sinx}{x} = 1}}}[/tex]

    [tex]\green{\boxed{ \bf{ \:\lim_{x \to 0 \: }\dfrac{tanx}{x} = 1}}}[/tex]

    [tex]\green{\boxed{ \bf{ \:\lim_{x \to 0 \: }\dfrac{ {e}^{x} – 1}{x} = 1}}}[/tex]

    [tex]\green{\boxed{ \bf{ \:\lim_{x \to 0 \: }\dfrac{ {a}^{x} – 1}{x} = log(a) }}}[/tex]

    [tex]\green{\boxed{ \bf{ \:\lim_{x \to 0 \: }\dfrac{log(1 + x)}{x} = 1}}}[/tex]

    [tex]\green{\boxed{ \bf{ \:\lim_{x \to 0 \: }\dfrac{ {sin}^{ – 1} x}{x} = 1}}}[/tex]

    [tex]\green{\boxed{ \bf{ \:\lim_{x \to 0 \: }\dfrac{ {tan}^{ – 1} x}{x} = 1}}}[/tex]

    [tex]\green{\boxed{ \bf{ \:\lim_{x \to 0} \: x \: sin\dfrac{1}{x} = 0}}}[/tex]

    Reply

Leave a Reply to Caroline Cancel reply