Find the compound interest if 59000 are invested for 2 years at the rate of 10 p.c.p.a. About the author Faith
Step-by-step explanation: just put the respective values! [tex]\bold{ \green{ \star{ \orange{Hope\:it\:helps.}}}}⋆⋆[/tex] Reply
Answer: Principal amount (P) = Rs.9000 Rate of interest (R) = 10% Time period (T) = 2 years Mode of compounding = Annually In order to find the compound interest when the principal amount is compounded annually, we need to implement the formula given below: \sf{\implies\:A=P\left(1+\dfrac{R}{100}\right)^n}⟹A=P(1+ 100 R ) n Applying the formulae into the equation: \sf{\longrightarrow\:A=9000\left(1+\dfrac{10}{100}\right)^2}⟶A=9000(1+ 100 10 ) 2 \sf{\longrightarrow\:A=9000\left(1+\dfrac{1}{10}\right)^2}⟶A=9000(1+ 10 1 ) 2 \sf{\longrightarrow\:A=9000\times\dfrac{11}{10}\times\dfrac{11}{10}}⟶A=9000× 10 11 × 10 11 \sf{\longrightarrow\:A=90\times11\times11}⟶A=90×11×11 \sf{\longrightarrow\:A=90\times121}⟶A=90×121 \sf{\longrightarrow\:A=10890}⟶A=10890 The total amount is Rs.10890. Now, in order to find the C.I amount: \sf{\implies\:C.I=A-P}⟹C.I=A−P Applying the values into the formula: \sf{\longrightarrow\:C.I=10890-9000}⟶C.I=10890−9000 \sf{\longrightarrow\:C.I=1890}⟶C.I=1890 Therefore, the Compound interest amount is Rs.1890. Step-by-step explanation: hope it helps please mark me as brainlist Reply
Step-by-step explanation:
just put the respective values!
[tex]\bold{ \green{ \star{ \orange{Hope\:it\:helps.}}}}⋆⋆[/tex]
Answer:
Principal amount (P) = Rs.9000
Rate of interest (R) = 10%
Time period (T) = 2 years
Mode of compounding = Annually
In order to find the compound interest when the principal amount is compounded annually, we need to implement the formula given below:
\sf{\implies\:A=P\left(1+\dfrac{R}{100}\right)^n}⟹A=P(1+
100
R
)
n
Applying the formulae into the equation:
\sf{\longrightarrow\:A=9000\left(1+\dfrac{10}{100}\right)^2}⟶A=9000(1+
100
10
)
2
\sf{\longrightarrow\:A=9000\left(1+\dfrac{1}{10}\right)^2}⟶A=9000(1+
10
1
)
2
\sf{\longrightarrow\:A=9000\times\dfrac{11}{10}\times\dfrac{11}{10}}⟶A=9000×
10
11
×
10
11
\sf{\longrightarrow\:A=90\times11\times11}⟶A=90×11×11
\sf{\longrightarrow\:A=90\times121}⟶A=90×121
\sf{\longrightarrow\:A=10890}⟶A=10890
The total amount is Rs.10890.
Now, in order to find the C.I amount:
\sf{\implies\:C.I=A-P}⟹C.I=A−P
Applying the values into the formula:
\sf{\longrightarrow\:C.I=10890-9000}⟶C.I=10890−9000
\sf{\longrightarrow\:C.I=1890}⟶C.I=1890
Therefore, the Compound interest amount is Rs.1890.
Step-by-step explanation:
hope it helps
please mark me as brainlist