find the area of the triangle whose sides are 17cm,15cm and 8cm using herons formula About the author Lydia
Answer: [tex]\sqrt{s(s-a)(s-b)(s-c)} = Area[/tex] [tex]s=(17+15+8)/2[/tex] [tex]s=40/2=20 cm[/tex] [tex]A=\sqrt{20(20-17)(20-15)(20-8)}[/tex] [tex]A=\sqrt{20(3)(5)(12)}[/tex] A= sq root of 20 X 3 X 5 X 12 sq root of (4 X 5) X 3 X 5 X (3 X 4) sq root of [tex]3^{2} X 4^{2} X 5^{2}[/tex] A=3 X 4 X 5 Area of the triangle= 60 sq.cm Hope it was helpful Reply
Answer: 60 Step-by-step explanation: Here, P = 8 + 15 + 17 = 21 cm S = (a + b + c)/2 sos = 40/2 = 20 cm s – a = 12, s – b = 5, s – c = 3 Area of riangle= sqrt S(S-a)(S-b S-b)(S-c) = sqrt 20(12)(5)(3) = sqrt 40(12)(5)(3) 60 Reply
Answer:
[tex]\sqrt{s(s-a)(s-b)(s-c)} = Area[/tex]
[tex]s=(17+15+8)/2[/tex]
[tex]s=40/2=20 cm[/tex]
[tex]A=\sqrt{20(20-17)(20-15)(20-8)}[/tex]
[tex]A=\sqrt{20(3)(5)(12)}[/tex]
A= sq root of 20 X 3 X 5 X 12
sq root of (4 X 5) X 3 X 5 X (3 X 4)
sq root of [tex]3^{2} X 4^{2} X 5^{2}[/tex]
A=3 X 4 X 5
Area of the triangle= 60 sq.cm
Hope it was helpful
Answer:
60
Step-by-step explanation:
Here, P = 8 + 15 + 17 = 21 cm
S = (a + b + c)/2 sos
= 40/2 = 20 cm
s – a = 12, s – b = 5, s – c = 3
Area of riangle= sqrt S(S-a)(S-b S-b)(S-c)
= sqrt 20(12)(5)(3)
= sqrt 40(12)(5)(3)
60