find the amount and compound interest on rupees 40000 in 3 yrs at 7 1/2 p.a. About the author Allison
Answer: Open in answr app P=40,000T=1 yearR=10% When payable quarterly, C.I=P(1+4×100R)4×T−P=40000(1+40010)4−40000=40000(4041)4−40000=4152.5∴C.I=Rs.4152.5 Reply
Answer: Amount is ₹49691.875. Compound Interest is ₹9691.875. Step-by-step explanation: Given that: [tex]\sf{\circ\;Principal=Rs.\;40000}[/tex] [tex]\sf{\circ\;Rate=7\dfrac{1}{2}\%\;per\;annum}[/tex] [tex]\sf{\circ\;Time=3\;years}[/tex] To Find: Amount Compound Interest Finding amount: As we know that: [tex]\bf{\circ\;Amount=Principal\left(1+\dfrac{Rate}{100}\right)^{Time}}[/tex] Here, [tex]\sf{\circ\;Principal=Rs.\;40000}[/tex] [tex]\sf{\circ\;Rate=7\dfrac{1}{2}=\dfrac{15}{2}\%\;per\;annum}[/tex] [tex]\sf{\circ\;Time=3\;years}[/tex] Substituting the values, [tex]\sf{\longmapsto40000\left(1+\dfrac{\dfrac{15}{2}}{100}\right)^{3}}[/tex] [tex]\sf{\longmapsto40000\left(1+\dfrac{15}{2\times100}\right)^{3}}[/tex] Multiplying the denominator, [tex]\sf{\longmapsto40000\left(1+\dfrac{15}{200}\right)^{3}}[/tex] Reducing the numbers, [tex]\sf{\longmapsto40000\left(1+\dfrac{3}{40}\right)^{3}}[/tex] Adding the numbers, [tex]\sf{\longmapsto40000\left(\dfrac{40+3}{40}\right)^{3}}[/tex] [tex]\sf{\longmapsto40000\left(\dfrac{43}{40}\right)^{3}}[/tex] Opening the bracket, [tex]\sf{\longmapsto40000\times\dfrac{43}{40}\times\dfrac{43}{40}\times\dfrac{43}{40}}[/tex] Cutting off the zeros, [tex]\sf{\longmapsto40\!\!\!\not{0}\!\!\!\not{0}\!\!\!\not{0}\times\dfrac{43}{4\!\!\!\not{0}}\times\dfrac{43}{4\!\!\!\not{0}}\times\dfrac{43}{4\!\!\!\not{0}}}[/tex] [tex]\sf{\longmapsto40\times\dfrac{43}{4}\times\dfrac{43}{4}\times\dfrac{43}{4}}[/tex] Dividing the numbers, [tex]\sf{\longmapsto40\times10.75\times10.75\times10.75}[/tex] Multiplying the numbers, [tex]\sf{\longmapsto49691.875}[/tex] Hence, Amount = ₹49691.875 Now, finding compound interest: As we know that: Compound Interest = Amount – Principal Here, Amount = ₹49691.875 Principal = ₹40000 Substituting the values, ↣ ₹(40000 – 49691.875) ↣ ₹9691.875 Hence, Compound Interest = ₹9691.875 Reply
Answer:
Open in answr app
P=40,000T=1 yearR=10%
When payable quarterly,
C.I=P(1+4×100R)4×T−P=40000(1+40010)4−40000=40000(4041)4−40000=4152.5∴C.I=Rs.4152.5
Answer:
Step-by-step explanation:
Given that:
[tex]\sf{\circ\;Principal=Rs.\;40000}[/tex]
[tex]\sf{\circ\;Rate=7\dfrac{1}{2}\%\;per\;annum}[/tex]
[tex]\sf{\circ\;Time=3\;years}[/tex]
To Find:
Finding amount:
As we know that:
[tex]\bf{\circ\;Amount=Principal\left(1+\dfrac{Rate}{100}\right)^{Time}}[/tex]
Here,
[tex]\sf{\circ\;Principal=Rs.\;40000}[/tex]
[tex]\sf{\circ\;Rate=7\dfrac{1}{2}=\dfrac{15}{2}\%\;per\;annum}[/tex]
[tex]\sf{\circ\;Time=3\;years}[/tex]
Substituting the values,
[tex]\sf{\longmapsto40000\left(1+\dfrac{\dfrac{15}{2}}{100}\right)^{3}}[/tex]
[tex]\sf{\longmapsto40000\left(1+\dfrac{15}{2\times100}\right)^{3}}[/tex]
Multiplying the denominator,
[tex]\sf{\longmapsto40000\left(1+\dfrac{15}{200}\right)^{3}}[/tex]
Reducing the numbers,
[tex]\sf{\longmapsto40000\left(1+\dfrac{3}{40}\right)^{3}}[/tex]
Adding the numbers,
[tex]\sf{\longmapsto40000\left(\dfrac{40+3}{40}\right)^{3}}[/tex]
[tex]\sf{\longmapsto40000\left(\dfrac{43}{40}\right)^{3}}[/tex]
Opening the bracket,
[tex]\sf{\longmapsto40000\times\dfrac{43}{40}\times\dfrac{43}{40}\times\dfrac{43}{40}}[/tex]
Cutting off the zeros,
[tex]\sf{\longmapsto40\!\!\!\not{0}\!\!\!\not{0}\!\!\!\not{0}\times\dfrac{43}{4\!\!\!\not{0}}\times\dfrac{43}{4\!\!\!\not{0}}\times\dfrac{43}{4\!\!\!\not{0}}}[/tex]
[tex]\sf{\longmapsto40\times\dfrac{43}{4}\times\dfrac{43}{4}\times\dfrac{43}{4}}[/tex]
Dividing the numbers,
[tex]\sf{\longmapsto40\times10.75\times10.75\times10.75}[/tex]
Multiplying the numbers,
[tex]\sf{\longmapsto49691.875}[/tex]
Hence,
Now, finding compound interest:
As we know that:
Here,
Substituting the values,
↣ ₹(40000 – 49691.875)
↣ ₹9691.875
Hence,