Fig. 6.15
In Fig. 6.16, if x+y=w+z, then prove that AOB
is a line.
B
r.r. I
Fig. 6.16​

Fig. 6.15
In Fig. 6.16, if x+y=w+z, then prove that AOB
is a line.
B
r.r. I
Fig. 6.16​

About the author
Alice

2 thoughts on “Fig. 6.15<br />In Fig. 6.16, if x+y=w+z, then prove that AOB<br />is a line.<br />B<br />r.r. I<br />Fig. 6.16​”

  1. Step-by-step explanation:

    s Given, x+y=w+z

    To Prove: AOB is a line or x+y=180

    (linear pair.)

    According to the question,

    x+y+w+z=360

    ∣ Angles around a point.

    (x+y)+(w+z)=360

    (x+y)+(x+y)=360

    ∣ Given x+y=w+z

    2(x+y)=360

    (x+y)=180

    Hence, x+y makes a linear pair.

    Therefore, AOB is a straight line.

    Reply
  2. [tex]\huge{\textbf{\textsf{{\color{navy}{An}{\purple{swe}}{\pink{r}}{\color{pink}:)}}}}}[/tex]

    Sum of all angles in a circle always 360°

    Hence

    ∠AOC + ∠BOC + ∠DOB + ∠AOD = 360°

    => x + y + w + z = 360°

    => x + y + x + y = 360°

    Given that x + y = w + z

    Plug the value we get

    => 2w + 2z = 360°

    => 2(w + z) = 360°

    w + z = 180° (linear pair)

    or ∠BOD + ∠AOD = 180°

    If the sum of two adjacent angles is 180°, then the non-common arms of the angles form a line

    Hence AOB is a line.

    Reply

Leave a Reply to Emma Cancel reply