Step-by-step explanation: [tex] = ({ { ({2}^{x + 2} )}^{x – \frac{1}{2} } )}^{x + 1 – 2} \\ = ({ { ({2}^{x + 2} )}^{ \frac{2x – 1}{2} } )}^{x – 1} \\ = ({ { {2}^{(x + 2)} }^{ \times \frac{(2x – 1)}{2} } )}^{x – 1} \\ = { ({2}^{ \frac{2 {x}^{2} – x + 4x – 2 }{2} } )}^{x – 1} \\ = { ({2}^{ \frac{(2 {x}^{2} + 3x – 2) }{2} \times (x – 1)} )}^{} \\ = {2}^{ \frac{ {2x}^{3} + 3 {x}^{2} – 2x – 2 {x}^{2} – 3x + 2}{2} } \\ = {2}^{ \frac{ {2x}^{3} + {x}^{2} – 5 x + 2}{2} } [/tex] HOPE THIS HELPS YOU MARK ME BRAINLIEST Reply
Step-by-step explanation:
[tex] = ({ { ({2}^{x + 2} )}^{x – \frac{1}{2} } )}^{x + 1 – 2} \\ = ({ { ({2}^{x + 2} )}^{ \frac{2x – 1}{2} } )}^{x – 1} \\ = ({ { {2}^{(x + 2)} }^{ \times \frac{(2x – 1)}{2} } )}^{x – 1} \\ = { ({2}^{ \frac{2 {x}^{2} – x + 4x – 2 }{2} } )}^{x – 1} \\ = { ({2}^{ \frac{(2 {x}^{2} + 3x – 2) }{2} \times (x – 1)} )}^{} \\ = {2}^{ \frac{ {2x}^{3} + 3 {x}^{2} – 2x – 2 {x}^{2} – 3x + 2}{2} } \\ = {2}^{ \frac{ {2x}^{3} + {x}^{2} – 5 x + 2}{2} } [/tex]
HOPE THIS HELPS YOU
MARK ME BRAINLIEST