Divide ₹ 1100 among A, B, C so that A shall receive 3/7 of what B and C together receive and B may receive 2/9 of what A and C receive. About the author Ava
Answer : Given that x+y+z 1100… (1) Given that x+y+z 1100… (1)Also given that, x = 3/7 (y +z) (y +z)y+z= 7x /3 U sing (1) , we get x+ 7x /3 = 1100 110010 /3 = 1100 x = 1100 X 3 / 10 = Rs.330 Rs.330Given that, y =2/3 (x+z) x+z =9y / 2 U sing (1) we get, y + 9y / 2 = 1100 11 y / 2 = 110 y= Rs.200 y= Rs.200now, using (1) y= Rs.200now, using (1)We get 330 + 200 +z = 1100 y= Rs.200now, using (1)We get 330 + 200 +z = 1100530 + z = 1100 y= Rs.200now, using (1)We get 330 + 200 +z = 1100530 + z = 1100 z = 1100 – 530 = 570 hope it helps you .... Reply
Given: Divide ₹ 1100 among A, B, C So that, ➛ A shall receive 3/7 of what B and C together receive. ➛ B may receive 2/9 of what A and C receive. To Find: What is the share of each person ( A , B , C ) Solution: ❍ Now, Let’s Assume that , ↦ Share of A = x ↦ Share of B = y ↦ Share of C = z [tex] \\ [/tex] ❍ As per the condition we get, [tex] \\ [/tex] ➛ X + Y + Z = 1100 [tex] \\ [/tex] [tex]{ \underline{ \frak{As \: we \: know \: that}}}[/tex] [tex]\tt \: x = \frac{3}{7} \times (y + z)[/tex] [tex] \\ [/tex] Which means, [tex] \tt \: y + z = \frac{7x}{3} [/tex] [tex] \\ [/tex] [tex]{ \underline{ \frak{Now, putting \: the \: values \: in \: the \: first \: condition \: we \: get, }}}[/tex] [tex]{ : \implies} \sf \: x + \frac{7x}{3} = 1100 \: \\ \\ \\ { : \implies} \sf \frac{3x}{3} + \frac{7x}{3} = 1100 \\ \\ \\ { : \implies} \sf \frac{3x + 7x}{3} = 1100 \\ \\ \\ { : \implies} \sf \frac{10x}{3} = 1100 \: \: \: \: \: \: \\ \\ \\ { : \implies} \sf x = \frac{110 \cancel0 \times 3}{1 \cancel0} \: \: \: \\ \\ \\ { : \implies} \sf x = 110 \times 3 \: \: \: \: \: \\ \\ \\ { : \implies} \sf { \pink{ \underline{ \boxed{ \frak {x = 330}}}}} \pink \bigstar \: \: \: \: \: \: [/tex] [tex] \\ [/tex] Henceforth , [tex] \: \: \: \: \: \: \: { \underline{ \rm{The \: share \: of \: person \: A \: is \: rupees \: 330}}}[/tex] [tex] \\ [/tex] [tex]{ \underline{ \frak{ \dag \: As \: given \: that}}}[/tex] [tex] \tt \: y \: = \frac{2}{9} (x + z)[/tex] [tex] \\ [/tex] So, [tex] \tt \: x + z = \frac{9y}{2} [/tex] [tex] \\ [/tex] [tex]{ \underline{ \frak{Now, putting \: the \: values \: in \: the \: first \: condition \: we \: get, }}}[/tex] [tex] { : \implies}\sf \frac{9y}{2} + y = 1100 \: \: \: \\ \\ \\ { : \implies} \sf \frac{9y}{2} + \frac{2y}{2} = 1100 \: \\ \\ \\ { : \implies}\sf \frac{9y + 2y}{2} = 1100 \\ \\ \\ { : \implies}\sf \frac{11y}{2} = 1100 \: \: \: \: \: \\ \\ \\ { : \implies}\sf y = \frac{1100 \times 2}{11} \: \: \\ \\ \\ { : \implies}\sf{ \pink{ \underline{ \boxed{ \frak{y = 200}}}}} \pink \bigstar\: \: \: \: \: \: [/tex] [tex] \\ [/tex] Henceforth, [tex] \: \: \: \: \: \: \: \: \: { \underline{ \rm{The \: share \: of \: person \: b \: is \: rupees \: 200}}}[/tex] [tex] \\ [/tex] Now, [tex]{ \underline{ \frak{Now, putting \: the \: values \: of \: x \: and \: y \: in \: the \: equation \: we \: get}}}[/tex] [tex] { : \implies}\sf x + y + z = 1100 \: \: \: \: \: \: \: \: \: \\ \\ \\ { : \implies}\sf 330 + 200 + z = 1100 \\ \\ \\ { : \implies}\sf 530 + z = 1100 \: \: \: \: \: \: \: \: \: \: \\ \\ \\ { : \implies}\sf z = 1100 – 530 \: \: \: \: \: \: \: \: \: \: \\ \\ \\ { : \implies}\sf { \pink{ \underline{ \boxed{ \frak{ z = 570}}}}} \pink \bigstar \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: [/tex] [tex] \\ [/tex] ⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ [tex] \: \: {\orange{ \underline{ \therefore{ \frak { The \: shares \: are \: 330,200,570 \: respectivly}}}}}[/tex] ⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ Reply
Answer :
Given that x+y+z 1100… (1)
Given that x+y+z 1100… (1)Also given that,
x = 3/7 (y +z)
(y +z)y+z= 7x /3
U sing (1) , we get x+ 7x /3 = 1100
110010 /3 = 1100
x = 1100 X 3 / 10 = Rs.330
Rs.330Given that, y =2/3 (x+z)
x+z =9y / 2
U sing (1) we get, y + 9y / 2 = 1100
11 y / 2 = 110
y= Rs.200
y= Rs.200now, using (1)
y= Rs.200now, using (1)We get 330 + 200 +z = 1100
y= Rs.200now, using (1)We get 330 + 200 +z = 1100530 + z = 1100
y= Rs.200now, using (1)We get 330 + 200 +z = 1100530 + z = 1100 z = 1100 – 530 = 570
hope it helps you ....
Given:
So that,
➛ A shall receive 3/7 of what B and C together receive.
➛ B may receive 2/9 of what A and C receive.
To Find:
Solution:
❍ Now, Let’s Assume that ,
[tex] \\ [/tex]
❍ As per the condition we get,
[tex] \\ [/tex]
➛ X + Y + Z = 1100
[tex] \\ [/tex]
[tex]{ \underline{ \frak{As \: we \: know \: that}}}[/tex]
[tex] \\ [/tex]
Which means,
[tex] \\ [/tex]
[tex]{ \underline{ \frak{Now, putting \: the \: values \: in \: the \: first \: condition \: we \: get, }}}[/tex]
[tex]{ : \implies} \sf \: x + \frac{7x}{3} = 1100 \: \\ \\ \\ { : \implies} \sf \frac{3x}{3} + \frac{7x}{3} = 1100 \\ \\ \\ { : \implies} \sf \frac{3x + 7x}{3} = 1100 \\ \\ \\ { : \implies} \sf \frac{10x}{3} = 1100 \: \: \: \: \: \: \\ \\ \\ { : \implies} \sf x = \frac{110 \cancel0 \times 3}{1 \cancel0} \: \: \: \\ \\ \\ { : \implies} \sf x = 110 \times 3 \: \: \: \: \: \\ \\ \\ { : \implies} \sf { \pink{ \underline{ \boxed{ \frak {x = 330}}}}} \pink \bigstar \: \: \: \: \: \: [/tex]
[tex] \\ [/tex]
Henceforth ,
[tex] \: \: \: \: \: \: \: { \underline{ \rm{The \: share \: of \: person \: A \: is \: rupees \: 330}}}[/tex]
[tex] \\ [/tex]
[tex]{ \underline{ \frak{ \dag \: As \: given \: that}}}[/tex]
[tex] \\ [/tex]
So,
[tex] \\ [/tex]
[tex]{ \underline{ \frak{Now, putting \: the \: values \: in \: the \: first \: condition \: we \: get, }}}[/tex]
[tex] { : \implies}\sf \frac{9y}{2} + y = 1100 \: \: \: \\ \\ \\ { : \implies} \sf \frac{9y}{2} + \frac{2y}{2} = 1100 \: \\ \\ \\ { : \implies}\sf \frac{9y + 2y}{2} = 1100 \\ \\ \\ { : \implies}\sf \frac{11y}{2} = 1100 \: \: \: \: \: \\ \\ \\ { : \implies}\sf y = \frac{1100 \times 2}{11} \: \: \\ \\ \\ { : \implies}\sf{ \pink{ \underline{ \boxed{ \frak{y = 200}}}}} \pink \bigstar\: \: \: \: \: \: [/tex]
[tex] \\ [/tex]
Henceforth,
[tex] \: \: \: \: \: \: \: \: \: { \underline{ \rm{The \: share \: of \: person \: b \: is \: rupees \: 200}}}[/tex]
[tex] \\ [/tex]
Now,
[tex]{ \underline{ \frak{Now, putting \: the \: values \: of \: x \: and \: y \: in \: the \: equation \: we \: get}}}[/tex]
[tex] { : \implies}\sf x + y + z = 1100 \: \: \: \: \: \: \: \: \: \\ \\ \\ { : \implies}\sf 330 + 200 + z = 1100 \\ \\ \\ { : \implies}\sf 530 + z = 1100 \: \: \: \: \: \: \: \: \: \: \\ \\ \\ { : \implies}\sf z = 1100 – 530 \: \: \: \: \: \: \: \: \: \: \\ \\ \\ { : \implies}\sf { \pink{ \underline{ \boxed{ \frak{ z = 570}}}}} \pink \bigstar \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: [/tex]
[tex] \\ [/tex]
⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
[tex] \: \: {\orange{ \underline{ \therefore{ \frak { The \: shares \: are \: 330,200,570 \: respectivly}}}}}[/tex]
⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀