distance between two points (X,7) and (1,15) is 10 units, find value of X

distance between two points (X,7) and (1,15) is 10 units, find value of X

About the author
Clara

2 thoughts on “distance between two points (X,7) and (1,15) is 10 units, find value of X<br /><br />​”

  1. Answer :

    • x = -5 or 7

    Solution :

    Given :

    • Distance between two points (X,7) and (1,15) is 10 units.

    To Find :

    • value of x.

    We can find the value of x using Distance Formula. As it is given distance between two points is 10 Units and two points are (x ,7) and (1,15). So we will substitute the values in distance formula to get value of x.

    [tex] \red\bigstar\:\boxed{\sf AB = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}} [/tex]

    Here,

    • [tex] \sf (x_1,y_1) \: are \: (x , 7).[/tex]
    • [tex] \sf (x_2,y_2) \: are \: (1 , 15).[/tex]

    [tex]\LARGE \color{blue}\mathfrak{Substituting\:the\:values}[/tex]

    [tex]\implies\sf 10 = \sqrt{(1-x)^2+(15-7)^2} [/tex]

    [tex]\implies\sf 10 = \sqrt{(1-x)^2+(8)^2}\\ [/tex]

    Squaring both the sides

    [tex]\implies\sf 10^2 = (1-x)^2+(8)^2\\ [/tex]

    [tex]\implies\sf 100 = (1-x)^2+64\\ [/tex]

    [tex]\implies\sf 36 = (1-x)^2\\ [/tex]

    Square root both the sides

    [tex]\implies\sf \sqrt{36} = \sqrt{(1-x)^2}\\ [/tex]

    [tex]\implies\sf ±6 = 1-x\\ [/tex]

    [tex]\implies \sf 1-x = ±6 \\ [/tex]

    [tex]\implies \sf (1-x) = 6 \:\: or \:\: (1-x) = -6 \\ [/tex]

    [tex]\implies \sf 1-x = 6 \:\: or \:\: 1-x = -6 \\ [/tex]

    [tex] \implies \sf -x = 6-1 \:\: or\; \: -x = -6-1 \\ [/tex]

    [tex]\implies \sf -x = 5 \:\: or \:\: -x = -7 \\ \\ \implies \sf \underline{\boxed{\pink{\sf x = -5 \: \: or\: \: 7 }}}[/tex]

    Hence,

    value of x is 7 or -5.

    [tex]{\fcolorbox{red}{blue}{\orange{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: SugarCrash\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}} [/tex]

    Reply

Leave a Reply to Genesis Cancel reply