CSA and volume of cylinder are 2640cm² and 27720³ respectively find radius, height and TSA About the author Josie
[tex]\bf\purple{QuestioN:-}[/tex] CSA and volume of cylinder are 2640 cm² and 27720 cm³ respectively. Find radius, height and TSA. [tex]\bf\green{AnsweR:-}[/tex] CSA of the cylinder = 2640 cm² CSA = 2π × r × h Volume of the cylinder = 27720 cm³ Volume = πr²h We need to find, r, h & TSA ⇒ CSA = 2π × r × h ⇒ 2,640 cm² = 2 × 22/7 × r × h [tex]\implies\bf{\dfrac{2,640\times7}{2\times22}=r\times{h}}[/tex] [tex]\implies\bf{420=r\times{h}}[/tex] ⇒ Volume = πr²h ⇒ 27,720 cm³ = 22/7 × r² × h [tex]\implies\bf{\dfrac{27,720\times7}{22}=r^2\times{h}}[/tex] [tex]\implies\bf{8,820=r^2\times{h}}[/tex] Now we got, [tex]:\longrightarrow\bf{r\times{h}=420}[/tex] [tex]:\longrightarrow\bf{r^2\times{h}=8,820}[/tex] [tex]:\longrightarrow\bf{r\times{r}\times{h}=8,820}[/tex] We already know that, r × h = 420 Then, [tex]:\longrightarrow\bf{r\times420=8,820}[/tex] [tex]:\longrightarrow\bf{r=\dfrac{8,820}{420}}[/tex] [tex]:\longrightarrow\bf{r=21}[/tex] Now we can substitute 21 instead of r in the equation r × h . ⇒ r × h = 420 ⇒ 21 × h = 420 ⇒ h = 420/21 ⇒ h = 20. Now we got , r = 21 h = 20 Then now we can find TSA of the cylinder. TSA = 2πr (h + r) Now we can substitute the values. [tex]\bf{TSA=2\times\dfrac{22}{7}\times(20+21)}[/tex] [tex]\bf{TSA=\dfrac{44}{7}\times(41)}[/tex] [tex]\bf{TSA=\dfrac{44\times41}{7}}[/tex] [tex]\bf{TSA=\dfrac{1804}{7}}[/tex] [tex]\bf{TSA=257.71}[/tex] Radius = 21 cm Height = 20 cm TSA = 257 .71 cm² Happy Learning !!☺ Reply
[tex]\bf\purple{QuestioN:-}[/tex]
CSA and volume of cylinder are 2640 cm² and 27720 cm³ respectively. Find radius, height and TSA.
[tex]\bf\green{AnsweR:-}[/tex]
CSA of the cylinder = 2640 cm²
CSA = 2π × r × h
Volume of the cylinder = 27720 cm³
Volume = πr²h
We need to find,
r, h & TSA
⇒ CSA = 2π × r × h
⇒ 2,640 cm² = 2 × 22/7 × r × h
[tex]\implies\bf{\dfrac{2,640\times7}{2\times22}=r\times{h}}[/tex]
[tex]\implies\bf{420=r\times{h}}[/tex]
⇒ Volume = πr²h
⇒ 27,720 cm³ = 22/7 × r² × h
[tex]\implies\bf{\dfrac{27,720\times7}{22}=r^2\times{h}}[/tex]
[tex]\implies\bf{8,820=r^2\times{h}}[/tex]
Now we got,
[tex]:\longrightarrow\bf{r\times{h}=420}[/tex]
[tex]:\longrightarrow\bf{r^2\times{h}=8,820}[/tex]
[tex]:\longrightarrow\bf{r\times{r}\times{h}=8,820}[/tex]
We already know that, r × h = 420
Then,
[tex]:\longrightarrow\bf{r\times420=8,820}[/tex]
[tex]:\longrightarrow\bf{r=\dfrac{8,820}{420}}[/tex]
[tex]:\longrightarrow\bf{r=21}[/tex]
Now we can substitute 21 instead of r in the equation r × h .
⇒ r × h = 420
⇒ 21 × h = 420
⇒ h = 420/21
⇒ h = 20.
Now we got ,
r = 21
h = 20
Then now we can find TSA of the cylinder.
TSA = 2πr (h + r)
Now we can substitute the values.
[tex]\bf{TSA=2\times\dfrac{22}{7}\times(20+21)}[/tex]
[tex]\bf{TSA=\dfrac{44}{7}\times(41)}[/tex]
[tex]\bf{TSA=\dfrac{44\times41}{7}}[/tex]
[tex]\bf{TSA=\dfrac{1804}{7}}[/tex]
[tex]\bf{TSA=257.71}[/tex]
Radius = 21 cm
Height = 20 cm
TSA = 257 .71 cm²
Happy Learning !!☺