Consider the following set of equations:

Equation C: y = 2x + 6
Equation D: y = 2x + 2

Which of the

By Ella

Consider the following set of equations:

Equation C: y = 2x + 6
Equation D: y = 2x + 2

Which of the following best describes the solution to the given set of equations? (4 points)

a
No solution

b
One solution

c
Two solutions

d
Infinite solutions

About the author
Ella

1 thought on “Consider the following set of equations:<br /><br /> Equation C: y = 2x + 6<br /> Equation D: y = 2x + 2<br /><br /> Which of the”

  1. Answer:

    \red{\maltese}\bf \: \underline{ Question} :✠

    Question

    :

    ⠀⠀⠀⠀⠀▪︎⠀Write down all the formulas of chapter MOTION ?

    Answer :

    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Formulas related to Chapter MOTION :

    \begin{gathered}\qquad\sf 1 .\: Average \:\:Speed \: \:=\: \dfrac{ Total \:Distance \:Travelled \:}{Total \:Time \:Taken \:}\\\\\end{gathered}

    1.AverageSpeed=

    TotalTimeTaken

    TotalDistanceTravelled

    \begin{gathered}\qquad\sf 2 .\: Average \:\:Velocity \: \:=\: \dfrac{ Displacement \:}{Change\:in \:Time \: \:}\\\\\end{gathered}

    2.AverageVelocity=

    ChangeinTime

    Displacement

    \begin{gathered}\qquad\sf 3 .\: Acceleration \: \:=\: \dfrac{ (v)\: Final \:Velocity \:-\:(u)\:Initial \:Velocity \:}{\:Time \: \:}\\\\\end{gathered}

    3.Acceleration=

    Time

    (v)FinalVelocity−(u)InitialVelocity

    \begin{gathered}\qquad\sf 4 .\: Momentum \:(p)\: \:=\: Mass\:(m)\: \times \:Velocity \:(v)\: \\\\\end{gathered}

    4.Momentum(p)=Mass(m)×Velocity(v)

    \begin{gathered}\qquad\sf 5 .\: Displacement \:\: \:=\: Final \:Position \:- \:Initial \:Position \: \\\\\end{gathered}

    5.Displacement=FinalPosition−InitialPosition

    ⠀⠀⠀⠀⠀Now , THREE EQUATIONS of MOTION :

    First Equation of Motion :

    \qquad \sf \: v\:\:=\:\;u \:+\: at \:\:v=u+at

    Second Equation of motion :

    \qquad \sf \: v^2\:\:=\:\;u^2 \:+\: 2as \:\:v

    2

    =u

    2

    +2as

    Third Equation of Motion :

    \qquad \sf \: s\:\:=\:\;ut \:+\: \dfrac{1}{2}at^2 \:\:s=ut+

    2

    1

    at

    2

    ⠀⠀⠀⠀⠀Here , s is the Displacement, u is the Initial velocity, v is the final velocity, a is the Acceleration & T is the time of motion .

    ⠀⠀⠀⠀⠀Now , According to Principle of CONSERVATION of MOMENTUM :

    \begin{gathered}\qquad \qquad \boxed{\qquad\underline { \bf m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2}} \\\\\end{gathered}

    m

    1

    u

    1

    +m

    2

    u

    2

    =m

    1

    v

    1

    +m

    2

    v

    2

    ⠀⠀⠀⠀⠀Here , \bf m_1m

    1

    is the mass of Object 1 , \bf m_2m

    2

    is the mass of Object 2 , \bf u_1u

    1

    is the Initial velocity of object 1 \bf u_2u

    2

    is the Initial velocity of object 2 , \bf v_1v

    1

    is the final velocity of Object 1 & \bf v_2v

    2

    is the Final velocity of object 2 .

    Reply

Leave a Reply to Mia Cancel reply