BC=12cm BD =3cm area of triangle ABC=80sq.cm. Find the area of triangle ADC and the triangle ABD About the author Bella
Step-by-step explanation: आ हहWhat Should Be Added to (-7)/12 to Get 3/8? – Mathematics ∴ – 7 12 + x = 3 8. ⇒ x = 3 8 – – 7 12. = 9 24 + 14 24. = 9 + 14 24 = 23 24. Reply
Answer: The area of Δ ADC= 60 square cm. Explanation: Since we have given that BC=12 BD=3 DC=BC-BD=12-3=9 So, BD:DC=3:9=1:3 So, we can let BD=x and DC=3x Now, \frac{\Delta ABD}{\Delta ADC}=\frac{\frac{1}{2}\times x\times h}{\frac{1}{2}\times 3x\times h}=\frac{1}{3} ΔADC ΔABD = 2 1 ×3x×h 2 1 ×x×h = 3 1 So, \begin{gathered}3ABD=ADC\\\end{gathered} 3ABD=ADC Now, \begin{gathered}\Delta ABD+\Delta ADC=\Delta ABC\\\\\frac{\Delta ADC}{3}+\Delta ADC=\Delta ABC\\\\\frac{4\Delta ADC}{3}=80\\\\\Delta ADC=60\text{ square cm}\end{gathered} ΔABD+ΔADC=ΔABC 3 ΔADC +ΔADC=ΔABC 3 4ΔADC =80 ΔADC=60 square cm Reply
Step-by-step explanation:
आ हहWhat Should Be Added to (-7)/12 to Get 3/8? – Mathematics
∴ – 7 12 + x = 3 8.
⇒ x = 3 8 – – 7 12.
= 9 24 + 14 24.
= 9 + 14 24 = 23 24.
Answer:
The area of Δ ADC= 60 square cm.
Explanation:
Since we have given that
BC=12
BD=3
DC=BC-BD=12-3=9
So, BD:DC=3:9=1:3
So, we can let
BD=x and DC=3x
Now,
\frac{\Delta ABD}{\Delta ADC}=\frac{\frac{1}{2}\times x\times h}{\frac{1}{2}\times 3x\times h}=\frac{1}{3}
ΔADC
ΔABD
=
2
1
×3x×h
2
1
×x×h
=
3
1
So,
\begin{gathered}3ABD=ADC\\\end{gathered}
3ABD=ADC
Now,
\begin{gathered}\Delta ABD+\Delta ADC=\Delta ABC\\\\\frac{\Delta ADC}{3}+\Delta ADC=\Delta ABC\\\\\frac{4\Delta ADC}{3}=80\\\\\Delta ADC=60\text{ square cm}\end{gathered}
ΔABD+ΔADC=ΔABC
3
ΔADC
+ΔADC=ΔABC
3
4ΔADC
=80
ΔADC=60 square cm