Area of the base of cuboid is 176 cm2 and it’s volume is 880 cm3. Find it’s height About the author Anna
Given : Area of the base of cuboid is 176 cm² and it’s volume is 880 cm³. Need To Find : Height of Cuboid. ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ ❍ Let’s Consider Height of Cuboid be h cm . [tex]\dag{\frak{\underline { As,\:We\:Know\:That\::}}}\\[/tex] [tex]\dag\:\boxed {\sf{ Volume _{(Cuboid)} = \bigg(Ar. \:of\:Base\times h \bigg)}}\\[/tex] Where , Ar. of Base is the Area of the Base of Cuboid. h is the Height of Cuboid. Volume of Cuboid is 880 cm³ ⠀⠀⠀⠀⠀⠀[tex]\underline {\frak{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\[/tex] [tex]:\implies \sf{ 880 = 176\times h }\\\\:\implies \sf{ \cancel {\dfrac{880}{176}} = h }\\\\\underline {\boxed{\pink{ \mathrm { h = 5\: cm}}}}\:\bf{\bigstar}\\[/tex] Therefore, ⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \mathrm {Hence,\: Height \:of\:Cuboid \:is\:\bf{5\: cm}}}}\\[/tex] ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ V E R I F I C A T I O N : [tex]\dag{\frak{\underline { As,\:We\:Know\:That\::}}}\\[/tex] [tex]\dag\:\boxed {\sf{ Volume _{(Cuboid)} = \bigg(Ar. \:of\:Base\times h \bigg)}}\\[/tex] Where , Ar. of Base is the Area of the Base of Cuboid 176 cm² . h is the Height of Cuboid = 5 cm Volume of Cuboid is 880 cm³ ⠀⠀⠀⠀⠀⠀[tex]\underline {\frak{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\[/tex] [tex]:\implies \sf{ 880 = 176\times 5 }\\\\\underline {\boxed{\pink{ \mathrm { 880cm^3 = 880\: cm^3}}}}\:\bf{\bigstar}\\[/tex] ⠀⠀⠀⠀⠀[tex]\therefore {\underline {\bf{ Hence, \:Verified \:}}}\\[/tex] ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ Reply
Given : Area of the base of cuboid is 176 cm² and it’s volume is 880 cm³.
Need To Find : Height of Cuboid.
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
❍ Let’s Consider Height of Cuboid be h cm .
[tex]\dag{\frak{\underline { As,\:We\:Know\:That\::}}}\\[/tex]
[tex]\dag\:\boxed {\sf{ Volume _{(Cuboid)} = \bigg(Ar. \:of\:Base\times h \bigg)}}\\[/tex]
Where ,
⠀⠀⠀⠀⠀⠀[tex]\underline {\frak{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\[/tex]
[tex]:\implies \sf{ 880 = 176\times h }\\\\:\implies \sf{ \cancel {\dfrac{880}{176}} = h }\\\\\underline {\boxed{\pink{ \mathrm { h = 5\: cm}}}}\:\bf{\bigstar}\\[/tex]
Therefore,
⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \mathrm {Hence,\: Height \:of\:Cuboid \:is\:\bf{5\: cm}}}}\\[/tex]
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
V E R I F I C A T I O N :
[tex]\dag{\frak{\underline { As,\:We\:Know\:That\::}}}\\[/tex]
[tex]\dag\:\boxed {\sf{ Volume _{(Cuboid)} = \bigg(Ar. \:of\:Base\times h \bigg)}}\\[/tex]
Where ,
⠀⠀⠀⠀⠀⠀[tex]\underline {\frak{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\[/tex]
[tex]:\implies \sf{ 880 = 176\times 5 }\\\\\underline {\boxed{\pink{ \mathrm { 880cm^3 = 880\: cm^3}}}}\:\bf{\bigstar}\\[/tex]
⠀⠀⠀⠀⠀[tex]\therefore {\underline {\bf{ Hence, \:Verified \:}}}\\[/tex]
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀