A pendulum swings through an angle of 30 and describes an arc 17.6 cm in length.Find the length of pendulum. About the author Sarah

Given θ = 30° Arc length = 17.6 cm To Find Length of the pendulum Solution ☯ θ/360 × 2πr = arc length Here in the given case, the value of θ is 30° ━━━━━━━━━━━━━━━━━━━━━━━━━ ✭ According to the Question : ➞ θ/360 × 2πr = arc length ➞ 30/360 × 2 × 22/7 × r = 17.6 ➞ 1/12 × 2 × r = 17.6 × 7/22 ➞ 1/6 × r = 5.6 ➞ r = 5.6 × 6 ➞ r = 33.6 cm ∴ The length of the pendulum is 33.6 cm Reply

Given :- A pendulum swings through an angle of 30 and describes an arc 17.6 cm in length. To Find :- Length of pendulum Solution :- At first We know that [tex]\sf Perimeter \; of \; circle = 2\pi r[/tex] [tex]\sf \dfrac{\theta}{360} \times 2\pi r[/tex] [tex]\sf \dfrac{30}{360} \times 2(3.14)r = 17.6[/tex] [tex]\sf\dfrac{1}{12} \times 6.28r = 17.6[/tex] [tex]\sf 6.28r = 12(17.6)[/tex] [tex]\sf r = \dfrac{211.2}{6.28}[/tex] [tex]\sf r = 33.6 cm[/tex] Reply

Given30°17.6cmTo FindSolution☯ θ/360 × 2πr = arc length

━━━━━━━━━━━━━━━━━━━━━━━━━

✭ According to the Question :➞ θ/360 × 2πr = arc length

➞ 30/360 × 2 × 22/7 × r = 17.6

➞ 1/12 × 2 × r = 17.6 × 7/22

➞ 1/6 × r = 5.6

➞ r = 5.6 × 6

➞ r = 33.6cm∴ The length of the pendulum is

33.6cmGiven :-A pendulum swings through an angle of 30 and describes an arc 17.6 cm in length.

To Find :-Length of pendulum

Solution :-At first

We know that

[tex]\sf Perimeter \; of \; circle = 2\pi r[/tex]

[tex]\sf \dfrac{\theta}{360} \times 2\pi r[/tex]

[tex]\sf \dfrac{30}{360} \times 2(3.14)r = 17.6[/tex]

[tex]\sf\dfrac{1}{12} \times 6.28r = 17.6[/tex]

[tex]\sf 6.28r = 12(17.6)[/tex]

[tex]\sf r = \dfrac{211.2}{6.28}[/tex]

[tex]\sf r = 33.6 cm[/tex]