A committee of 10 members has to be formed from 15 men and 7 women. In howmany ways can this be done when the committee consists of at least 6 women ?od 16 About the author Margaret
required Answer :- ☯ GIVEN , A committee of 10 members has to be formed from 15 men and 7 women. ✿ Solution , [tex] = \frac{7!}{6!} \times \frac{15!}{4! \times 11!} + \frac{7!}{7!} \times \frac{15!}{3! \times 21!} [/tex] [tex] = 7 \times \frac{15 \times 14 \times 13 \times 12}{4 \times 3 \times 2} + 1 \times \frac{15 \times 14 \times 13}{3 \times 2} [/tex] ⟹[tex]now \: 7 \times 1365 + 455[/tex] ⟹[tex]9555 + 445[/tex] ⟹[tex]10010[/tex] Hence , 10010 is the Answer 🙂 Reply
Answer: Number of ways = 10010 Step-by-step explanation: Given: A committee of 10 members is to be formed from 15 men and 7 women. To Find: Number of ways the committee can be formed if it consists of atleast 6 women Solution: By given the committee must not exceed 10 members and should contain atleast 6 women. Thus the committee can be selected in the following ways: 6 women and 4 men or 7 women and 3 men This can be represented as, [tex]\tt Total\:number\:of\:ways=\:^7C_6\times \:^{15}C_4+\: ^7C_7+\: ^{15}C_3[/tex] We know that, [tex]\boxed{\tt ^nC_r=\dfrac{n!}{r!(n-r)!} }[/tex] Therefore we get, [tex]\tt Total\:number\:of\:ways=\dfrac{7!}{6!}\times \dfrac{15!}{4!\times 11!} +\dfrac{7!}{7!} \times \dfrac{15!}{3!\times 12!}[/tex] [tex]\tt \implies 7\times \dfrac{15\times 14\times 13\times 12}{4\times 3\times 2} +1\times \dfrac{15\times 14\times 13}{3\times 2}[/tex] [tex]\tt \implies 7\times1365+ 455[/tex] [tex]\tt \implies 9555+455[/tex] [tex]\tt \implies 10010[/tex] Hence the committee can be formed in 10010 ways. Reply
required Answer :-
☯ GIVEN ,
A committee of 10 members has to be formed from 15 men and 7 women.
✿ Solution ,
[tex] = \frac{7!}{6!} \times \frac{15!}{4! \times 11!} + \frac{7!}{7!} \times \frac{15!}{3! \times 21!} [/tex]
[tex] = 7 \times \frac{15 \times 14 \times 13 \times 12}{4 \times 3 \times 2} + 1 \times \frac{15 \times 14 \times 13}{3 \times 2} [/tex]
⟹[tex]now \: 7 \times 1365 + 455[/tex]
⟹[tex]9555 + 445[/tex]
⟹[tex]10010[/tex]
Hence , 10010 is the Answer 🙂
Answer:
Number of ways = 10010
Step-by-step explanation:
Given:
To Find:
Solution:
By given the committee must not exceed 10 members and should contain atleast 6 women.
Thus the committee can be selected in the following ways:
6 women and 4 men or 7 women and 3 men
This can be represented as,
[tex]\tt Total\:number\:of\:ways=\:^7C_6\times \:^{15}C_4+\: ^7C_7+\: ^{15}C_3[/tex]
We know that,
[tex]\boxed{\tt ^nC_r=\dfrac{n!}{r!(n-r)!} }[/tex]
Therefore we get,
[tex]\tt Total\:number\:of\:ways=\dfrac{7!}{6!}\times \dfrac{15!}{4!\times 11!} +\dfrac{7!}{7!} \times \dfrac{15!}{3!\times 12!}[/tex]
[tex]\tt \implies 7\times \dfrac{15\times 14\times 13\times 12}{4\times 3\times 2} +1\times \dfrac{15\times 14\times 13}{3\times 2}[/tex]
[tex]\tt \implies 7\times1365+ 455[/tex]
[tex]\tt \implies 9555+455[/tex]
[tex]\tt \implies 10010[/tex]
Hence the committee can be formed in 10010 ways.