given:– [tex] \frac{a}{b} = \frac{b}{a} – 2 – – – (1)[/tex] to find:– [tex] \frac{ {a}^{2} }{ {b}^{2} } + \frac{ {b}^{2} }{ {a}^{2} } [/tex] solution:– rearrange equation 1 we get, [tex] \frac{a}{b} – \frac{b}{a} = – 2[/tex] multiply –1 on both side., [tex] \frac{b}{a} – \frac{a}{b} = 2[/tex] squaring both the side., [tex]( { \frac{b}{a} – \frac{a}{b} })^{2} = 4[/tex] on expanding., [tex] \frac{ {b}^{2} }{ {a}^{2} } + \frac{ {a}^{2} }{ {b}^{2} } – 2 \times \frac{b}{a} \times \frac{a}{b} = 4[/tex] on simplification we get., [tex] \frac{ {b}^{2} }{ {a}^{2} } + \frac{ {a}^{2} }{ {b}^{2} } = 4 + 2[/tex] [tex] \frac{ {a}^{2} }{ {b}^{2} } + \frac{ {b}^{2} }{ {a}^{2} } = 6[/tex] hence find... hope it helps you!!!!!!!!!!!!! Reply
given:–
[tex] \frac{a}{b} = \frac{b}{a} – 2 – – – (1)[/tex]
to find:–
[tex] \frac{ {a}^{2} }{ {b}^{2} } + \frac{ {b}^{2} }{ {a}^{2} } [/tex]
solution:–
rearrange equation 1
we get,
[tex] \frac{a}{b} – \frac{b}{a} = – 2[/tex]
multiply –1 on both side.,
[tex] \frac{b}{a} – \frac{a}{b} = 2[/tex]
squaring both the side.,
[tex]( { \frac{b}{a} – \frac{a}{b} })^{2} = 4[/tex]
on expanding.,
[tex] \frac{ {b}^{2} }{ {a}^{2} } + \frac{ {a}^{2} }{ {b}^{2} } – 2 \times \frac{b}{a} \times \frac{a}{b} = 4[/tex]
on simplification we get.,
[tex] \frac{ {b}^{2} }{ {a}^{2} } + \frac{ {a}^{2} }{ {b}^{2} } = 4 + 2[/tex]
[tex] \frac{ {a}^{2} }{ {b}^{2} } + \frac{ {b}^{2} }{ {a}^{2} } = 6[/tex]
hence find...
hope it helps you!!!!!!!!!!!!!