[tex]\huge{\underline{\underline{\bf Question}}}[/tex]

Speed of a Boat on still water is 15 km/hr. It goes 30 km upstr

[tex]\huge{\underline{\underline{\bf Question}}}[/tex]

Speed of a Boat on still water is 15 km/hr. It goes 30 km upstream and returns back at the same point 4 hours 30 minutes. Find the speed of the stream

Don’t even dare to spam ❌

Step by step explanation ✅

Correct answer will be marked as Brainliest ⭐

Good luck​

About the author
Charlie

2 thoughts on “[tex]\huge{\underline{\underline{\bf Question}}}[/tex] <br /><br />Speed of a Boat on still water is 15 km/hr. It goes 30 km upstr”

  1. Given :

    • Speed of boat in water = 15 km/h
    • Distance travelled = 30km
    • Time taken = 4 hour 30 mins = [tex]\sf 4+\dfrac{1}{2}[/tex]

    To Find :

    • Speed of stream

    Solution :

    Let the Speed of stream be x

    Speed of stream in upstream = (15-x)

    Speed of stream in downstream = (15+x)

    Formula To Be used,

    [tex]\sf Speed = \dfrac{distance}{Time\:taken}\\\\\boxed{\boxed{\sf Time\:taken =\dfrac{distance}{Speed}}}[/tex]

    Given that,

    • Time taken = [tex]\sf 4+\dfrac{1}{2}\Rightarrow \dfrac{9}{2}[/tex]
    • Speed (Upstream) = (15 – x)
    • Speed (Downstream) = (15 + x)
    • Distance Travelled = 30 km

    Substituting values,

    [tex]\sf \rightarrow \dfrac{30}{(15+x)}+\dfrac{30}{(15-x)} =\dfrac{9}{2}\\\\\sf\rightarrow \dfrac{30(15-x)+30(15+x)}{(15+x)(15-x)}=\dfrac{9}{2}\\\\\sf \rightarrow\dfrac{450-{\cancel{30x}}+450+{\cancel{30x}}}{((15)^2-x^2)}\\\\\sf\rightarrow \dfrac{900}{(225-x^2)}=\dfrac{9}{2}\\\\\sf\rightarrow 2(900) = 9(225 – x^2)\\\\\sf \rightarrow1800 = 2025 -9x^2 \\\\\sf \rightarrow 1800 – 2025 = -9x^2\\\\\sf\rightarrow -9x^2 = -225\\\\\sf\rightarrow x^2 = \dfrac{-225}{-9}\\\\\sf\rightarrow x^2=25\\\\\sf \rightarrow x = \pm 5[/tex]

    Note : Speed can not be negative

    Required Answer :

    Speed of the stream is [tex]\underline{\sf 5\:km/h}[/tex]

    Reply
  2. [tex]\sf\underline \red{ Given}[/tex]

    • Speed of boat in water = 15 km/h
    • Distance travelled = 30km
    • Time taken = 4 hour 30 mins = [tex]\sf 4+\dfrac{1}{2}[/tex]

    [tex]\sf\underline \gray{ To\:Find}[/tex]

    • Speed of stream

    [tex]\sf\underline \pink{ Solution}[/tex]

    • Let the speed of the train be x km/h.
    • Downstream speed = (15 + x) km/h
    • Upstream speed = (15 – x) km/h
    • Time taken to go 30 km upstream = 30/(15 – x) hrs.
    • Time taken to go 30 km downstream = 30/(15 + x) hrs.

    According to the Question,

    • ⇒ 30/(15 – x) + 30/(15 + x) = 9/2
    • ⇒ 30(15 + x) + 30(15 – x)/(15 + x) (15 – x) = 9/2
    • ⇒ 450 + 30x + 450 – 30x/225 – x² = 9/2
    • ⇒ 900/225 – x² = 9/2

    By cross-multiplication, we get

    • ⇒ 9(225 – x²) = 1800
    • ⇒ 225 – x² = 200
    • ⇒ x² = 25
    • ⇒ x = ± 5

    (As speed can’t be negative)

    • ⇒ x = 5 km/h

    Hence, the speed of stream is 5 km/h.

    Reply

Leave a Comment