[tex]{\boxed{\underline{\tt{\orange{Required \: \: answer:-}}}}}[/tex] ★GIVEN:- Two Equations:- 2x + y = 4 3x + 2y = 6 ★SOLVED USING:- Elimination Method ★SOLUTION:- [tex] : \longrightarrow \displaystyle \rm{2x + y = 4 } \\ \\ : \longrightarrow \displaystyle \rm{y = 4 – 2x….(1.)} [/tex] Now, [tex] : \longrightarrow \displaystyle \rm{3x + 2y = 6 } \\ \\ \sf{put \: the \: value \: of \: y \: from \: (1.) \: into \: this \: equation} \\ \\ : \longrightarrow \displaystyle \rm{3x + 2(4 – 2x) = 6} \\ \\ : \longrightarrow \displaystyle \rm{3x + 8 – 4x = 6 } \\ \\ : \longrightarrow \displaystyle \rm{8 – x = 6 } \\ \\ : \longrightarrow \displaystyle \rm{x = 8 – 6 } \\ \\ { \boxed{ \underline{ \huge{ \blue{x = 2}}}}} \\ \\ \sf{Now \: Put \: the \: value \: of \: x \: into \: (1.) } \\ \\ : \longrightarrow \displaystyle \rm{y = 4 – 2(2)} \\ \\ : \longrightarrow \displaystyle \rm{y = 4 – 4} \\ \\ { \boxed{ \underline{ \huge{ \blue{y = 0}}}}}[/tex] So, x = 2 and y = 0 ★VERIFY:- Put the values of x and y in these equations:- 2x + y = 4 [tex]{\boxed{\underline{\displaystyle{\sf{\bf{\red{L.H.S}}}}}}}[/tex] [tex] \rm{ = 2(2) + 0} \\ \\ \rm{ = 4}[/tex] [tex]{\boxed{\underline{\displaystyle{\sf{\bf{\red{R.H.S}}}}}}}[/tex] 3x + 2y = 6 [tex]{\boxed{\underline{ \displaystyle{\sf{\bf{\red{L.H.S}}}}}}}[/tex] [tex] \rm{ = 3(2) + 2(0)} \\ \\ \rm{ =6 }[/tex] [tex]{\boxed{\underline{\displaystyle{\sf{\bf{\red{R.H.S}}}}}}}[/tex] Hence, Solved and Verified 🙂 Reply
[tex]{\boxed{\underline{\tt{\orange{Required \: \: answer:-}}}}}[/tex]
★GIVEN:-
Two Equations:-
★SOLVED USING:-
★SOLUTION:-
[tex] : \longrightarrow \displaystyle \rm{2x + y = 4 } \\ \\ : \longrightarrow \displaystyle \rm{y = 4 – 2x….(1.)} [/tex]
Now,
[tex] : \longrightarrow \displaystyle \rm{3x + 2y = 6 } \\ \\ \sf{put \: the \: value \: of \: y \: from \: (1.) \: into \: this \: equation} \\ \\ : \longrightarrow \displaystyle \rm{3x + 2(4 – 2x) = 6} \\ \\ : \longrightarrow \displaystyle \rm{3x + 8 – 4x = 6 } \\ \\ : \longrightarrow \displaystyle \rm{8 – x = 6 } \\ \\ : \longrightarrow \displaystyle \rm{x = 8 – 6 } \\ \\ { \boxed{ \underline{ \huge{ \blue{x = 2}}}}} \\ \\ \sf{Now \: Put \: the \: value \: of \: x \: into \: (1.) } \\ \\ : \longrightarrow \displaystyle \rm{y = 4 – 2(2)} \\ \\ : \longrightarrow \displaystyle \rm{y = 4 – 4} \\ \\ { \boxed{ \underline{ \huge{ \blue{y = 0}}}}}[/tex]
So, x = 2 and y = 0
★VERIFY:-
Put the values of x and y in these equations:-
[tex]{\boxed{\underline{\displaystyle{\sf{\bf{\red{L.H.S}}}}}}}[/tex]
[tex] \rm{ = 2(2) + 0} \\ \\ \rm{ = 4}[/tex]
[tex]{\boxed{\underline{\displaystyle{\sf{\bf{\red{R.H.S}}}}}}}[/tex]
[tex]{\boxed{\underline{ \displaystyle{\sf{\bf{\red{L.H.S}}}}}}}[/tex]
[tex] \rm{ = 3(2) + 2(0)} \\ \\ \rm{ =6 }[/tex]
[tex]{\boxed{\underline{\displaystyle{\sf{\bf{\red{R.H.S}}}}}}}[/tex]
Hence, Solved and Verified 🙂
x = 2
y =0
HOPE IT HELPS✿✿✿✿✿