If roots of equation x²+7x+5 = 0 are α & β. Find 1/α ²+ 1/β²​

If roots of equation x²+7x+5 = 0 are α & β. Find 1/α ²+ 1/β²​

About the author
Katherine

2 thoughts on “If roots of equation x²+7x+5 = 0 are α & β. Find 1/α ²+ 1/β²​”

  1. Given Equation

    [tex] \tt \to \: {x}^{2} + 7x + 5 = 0[/tex]

    To Find

    [tex] \tt\to \dfrac{1}{ \alpha ^{2} } + \dfrac{1}{ { \beta }^{2} } [/tex]

    Now Compare with

    [tex] \tt \to {ax}^{2} + bx + c = 0[/tex]

    We Get

    [tex] \tt \to \: a = 1,b = 7 \: and \: c = 5[/tex]

    Sum of the root are

    [tex] \tt \to \: ( \alpha + \beta ) = \dfrac{ – b}{a} [/tex]

    Product of the root are

    [tex] \tt \to \: ( \alpha \beta ) = \dfrac{c}{a} [/tex]

    We get

    [tex]\tt \to \: ( \alpha + \beta ) = \dfrac{ – 7}{1} = – 7[/tex]

    [tex] \tt \to \: ( \alpha \beta ) = \dfrac{5}{1} = 5[/tex]

    Now we Have to find

    [tex]\tt\to \dfrac{1}{ \alpha ^{2} } + \dfrac{1}{ { \beta }^{2} } [/tex]

    Taking Lcm

    [tex] \tt \to \: \dfrac{ { \alpha }^{2} + { \beta }^{2} }{( \alpha \beta ) {}^{2} } [/tex]

    [tex] \tt \to \: \dfrac{( \alpha + \beta ) {}^{2} – 2 \alpha \beta }{( \alpha \beta ) {}^{2} } [/tex]

    [tex] \tt \to \: \dfrac{( – 7) {}^{2} – 2 \times 5 }{(5) ^{2} } [/tex]

    [tex] \tt \to \: \dfrac{49 – 10}{25} = \dfrac{39}{25} [/tex]

    Answer

    [tex] \tt \to \: \dfrac{39}{25} [/tex]

    Reply
  2. Answer:

    39/25

    Step-by-step explanation:

    For an equation in form of ax² + bx + c = 0, -b/a and c/a is the sum and product of roots respectively. Therefore, if α and β are roots:

    ⇒ -(7/1) = α + β and 5/1 = αβ

    ⇒ – 7 = α + β and 5 = αβ

    Square on both sides of α+β

    ⇒ 49 = α² + β² + 2αβ

    ⇒ 49 – 2(5) = α² + β² [αβ = 5]

    ⇒ 39 = α² + β²

    ∴ 1/α² + 1/β² = (β² + α²)/(αβ)²

    = 39/(5)²

    = 39/25

    Reply

Leave a Comment