If a radius of a circle reduced by 50%, its area will be reduced by ​

If a radius of a circle reduced by 50%, its area will be reduced by ​

About the author
Valentina

2 thoughts on “If a radius of a circle reduced by 50%, its area will be reduced by ​”

  1. [tex]\\[/tex]

    Answer:

    Area goes with the square of radius, so if we multiply the radius by . 5 we multiply the area by . 52=. 25, a reduction of 75%.

    hope it helps uh :)

    Reply
  2. [tex]{\huge{\bf{\orange{Solution-:}}}}[/tex]

    [tex]\blue\implies[/tex] [tex]\sf75[/tex]%

    [tex]{\huge{\bf{\orange{Explanation-:}}}}[/tex]

    [tex]{\bf{\green{Let~Original~Radius=R}}}[/tex]

    [tex]{\bf{\blue{New~Radius-:}}}[/tex]

    [tex]\sf\frac\green{50}\green{100}[/tex][tex]\small\sf\green{R}[/tex] = [tex]\sf\frac\green{R}\green{2}[/tex]

    [tex]{\bf{\blue{Original~area-:}}}[/tex]

    [tex]\sf\green{πR^2}[/tex]

    [tex]{\bf{\green{New~area}}}[/tex] = [tex]\sf\green{π}[/tex]([tex]\sf\frac\green{R}\green{2}[/tex])[tex]\green{^2}[/tex] = [tex]\sf\frac\green{πR^2}\green{4}[/tex]

    [tex]{\bf{\blue{Decrease~in~area-:}}}[/tex]

    ([tex]\sf\frac\green{3πR^2}\green{4}[/tex] × [tex]\sf\frac\green{1}\green{πR^2}[/tex] × [tex]\small\sf\green{100}[/tex])%

    [tex]\blue\implies[/tex] [tex]\sf\green{75}[/tex]%

    ___________________________⚡

    ʀ ʟʀ ɪɴ ʜɴ:)

    Reply

Leave a Comment