THE LENGTH OF A RECTANGULAR FLOOR IS 20M,MORE THAN ITS BREADTH. IF THE PERIMETER OF THE FLOOR IS 280M,WHAT IS ITS LENGTH? About the author Sadie
Answer: let x be the breadth then length is x+20 so, 2(l+b)= perimeter of floor now, 2(x+20+x)=280 2x+20=140 2x=120 x=60 therefore length is x+20= 60+20=80 Reply
❍ Let’s say, that the breadth of the floor be x and the length of the floor is 20m more than it’s breadth, therefore, the length be (x + 20) respectively. ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ [tex]\underline{\bf{\dag}\frak{\;As\;we\;know\;that:}}[/tex] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ [tex]\star\;\boxed{\pink{\sf{Perimeter\;_{(rectangle)}=2(Length+Breadth)}}}[/tex] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Therefore, ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ [tex]:\implies\sf{2[(x+20)+x]=280}\\\\\\\\:\implies\sf{2(2x+20)=280}\\\\\\\\:\implies\sf{4x+40=280}\\\\\\\\:\implies\sf{4x=280-40}\\\\\\\\:\implies\sf{4x=240}\\\\\\\\:\implies\sf{x=\cancel{\dfrac{240}{4}}}\\\\\\\\:\implies\underline{\boxed{\frak{\purple{x=60\;m}}}}{\;\bigstar}[/tex] ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Hence, ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ Length of the floor = (x + 20) = (60 + 20) = 80m Breadth of the floor = x = 60m ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ [tex]\therefore\;{\underline{\sf{Hence,\;its\;length\;is\;{\textsf{\textbf{80\;m}}}}.}}[/tex] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Reply
Answer:
let x be the breadth
then length is x+20
so, 2(l+b)= perimeter of floor
now, 2(x+20+x)=280
2x+20=140
2x=120
x=60
therefore length is x+20= 60+20=80
❍ Let’s say, that the breadth of the floor be x and the length of the floor is 20m more than it’s breadth, therefore, the length be (x + 20) respectively.
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[tex]\underline{\bf{\dag}\frak{\;As\;we\;know\;that:}}[/tex]
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[tex]\star\;\boxed{\pink{\sf{Perimeter\;_{(rectangle)}=2(Length+Breadth)}}}[/tex]
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Therefore,
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[tex]:\implies\sf{2[(x+20)+x]=280}\\\\\\\\:\implies\sf{2(2x+20)=280}\\\\\\\\:\implies\sf{4x+40=280}\\\\\\\\:\implies\sf{4x=280-40}\\\\\\\\:\implies\sf{4x=240}\\\\\\\\:\implies\sf{x=\cancel{\dfrac{240}{4}}}\\\\\\\\:\implies\underline{\boxed{\frak{\purple{x=60\;m}}}}{\;\bigstar}[/tex]
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Hence,
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[tex]\therefore\;{\underline{\sf{Hence,\;its\;length\;is\;{\textsf{\textbf{80\;m}}}}.}}[/tex]
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━