If two adjacent angles of a parallelogram are (5x-5) and (10x+35), then the ratio of these angle is About the author Ayla
Answer: 1 : 3 Step-by-step explanation: Given: In a parallelogram, First adjacent angle = (5x-5) Second adjacent angle = (10x+35) To Find: The ratio of these angles. Solution: We know that in a parallelogram the sum of the adjacent angles is always equal to 180°. (5x-5)+(10x+35) = 180 => 5x +10x +35-5 = 180 => 15x + 30 = 180 => 15x = 180-30 => 15x = 150 x = 150/15 = 10 Now, The ratio of these angles = [tex] = \frac{first \: angle}{second \: angle} \\ = \frac{(5x – 5)}{(10x + 35)} \\ = \frac{5(x – 1)}{5(2x + 7)} \\ = \frac{(x -1)}{(2x + 7)} \\ = \frac{(10 – 1)}{(2 \times 10 + 7)} \\ = \frac{9}{20 + 7} \\ = \frac{9}{27} \\ = \frac{1}{3} [/tex] = 1 : 3 ANS. Reply
Answer : 1 : 3 Explanation : In a parallelogram, Two adjacent angles are [tex](5x – 5)[/tex] and [tex](10x + 35)[/tex] Find the ratio of these angles. Let’s calculate the angles first. We know that, the adjacent angles of a parallelogram are supplementary which will add up to 180° [tex]\therefore (5x – 5) + (10x + 35) = 180^{\circ}[/tex] Solving for [tex]\boldsymbol x[/tex] [tex]{ \implies \: (5x – 5) + (10x + 35) = 180^{ \circ} }[/tex] [tex]\implies \:5x – 5 + 10x + 35 = {180}^{ \circ} \\[/tex] [tex]\implies \:15x + 30 = {180}^{ \circ} \\[/tex] [tex]\implies \:15x = {180}^{ \circ} – {30}^{ \circ} \\[/tex] [tex]\implies \:15x = {150}^{ \circ} \\[/tex] [tex]\implies \:x = \frac{150}{15} \\[/tex] [tex]\implies \:x = {10}^{ \circ} \\[/tex] [tex]{ \underline{ \sf{\therefore{The \: value \: of \: \boldsymbol{x} \: is \: {10}^{ \circ} }}}}[/tex] Hence, the angles are : [tex](5x – 5) = \sf 5(10) – 5 = \blue{45^{\circ}}[/tex] [tex](10x + 35) = \sf 10(10) + 35 = \blue{135^{\circ}}[/tex] Forming in ratio : → 45 : 135 → 9 : 27 → 1 : 3 Required ratio = 1 : 3 Reply
Answer: 1 : 3
Step-by-step explanation:
Given: In a parallelogram,
First adjacent angle = (5x-5)
Second adjacent angle = (10x+35)
To Find: The ratio of these angles.
Solution:
We know that in a parallelogram the sum of the adjacent angles is always equal to 180°.
(5x-5)+(10x+35) = 180
=> 5x +10x +35-5 = 180
=> 15x + 30 = 180
=> 15x = 180-30
=> 15x = 150
x = 150/15 = 10
Now,
The ratio of these angles =
[tex] = \frac{first \: angle}{second \: angle} \\ = \frac{(5x – 5)}{(10x + 35)} \\ = \frac{5(x – 1)}{5(2x + 7)} \\ = \frac{(x -1)}{(2x + 7)} \\ = \frac{(10 – 1)}{(2 \times 10 + 7)} \\ = \frac{9}{20 + 7} \\ = \frac{9}{27} \\ = \frac{1}{3} [/tex]
= 1 : 3 ANS.
Answer :
1 : 3
Explanation :
In a parallelogram,
Two adjacent angles are [tex](5x – 5)[/tex] and [tex](10x + 35)[/tex]
Find the ratio of these angles.
Let’s calculate the angles first.
We know that, the adjacent angles of a parallelogram are supplementary which will add up to 180°
[tex]\therefore (5x – 5) + (10x + 35) = 180^{\circ}[/tex]
Solving for [tex]\boldsymbol x[/tex]
[tex]{ \implies \: (5x – 5) + (10x + 35) = 180^{ \circ} }[/tex]
[tex]\implies \:5x – 5 + 10x + 35 = {180}^{ \circ} \\[/tex]
[tex]\implies \:15x + 30 = {180}^{ \circ} \\[/tex]
[tex]\implies \:15x = {180}^{ \circ} – {30}^{ \circ} \\[/tex]
[tex]\implies \:15x = {150}^{ \circ} \\[/tex]
[tex]\implies \:x = \frac{150}{15} \\[/tex]
[tex]\implies \:x = {10}^{ \circ} \\[/tex]
[tex]{ \underline{ \sf{\therefore{The \: value \: of \: \boldsymbol{x} \: is \: {10}^{ \circ} }}}}[/tex]
Hence, the angles are :
Forming in ratio :
→ 45 : 135
→ 9 : 27
→ 1 : 3
Required ratio = 1 : 3