Sum of two consecutive square of number are 481. Find the sum of the two number

Sum of two consecutive square of number are 481. Find the sum of the two number

About the author
Piper

2 thoughts on “Sum of two consecutive square of number are 481. Find the sum of the two number”

  1. let first number = X

    let second number = X+1

    square of the two number

    (X)^2 + (X+1)^2 =481

    x^2 + x^2+1+2x =481

    2x^2 +2x +1-481

    2(X2+x-240) =0

    X2 +X -240

    X2 +16x -15x -240

    X(X+16) -15(X+16)

    x-15) (X+16)

    X=15

    X=-16

    Reply
  2. [tex]\large\bf{\underline{\underline{Question:−}}}[/tex]

    The sum of the squares of two consecutive positive integers is 481. Find the integers.

    [tex]\large\bf{\underline{\underline{Answer:−}}}[/tex]

    [tex]\color{red}\longrightarrow{}[/tex][tex]\rm{x² + (x+1)^2 = 481}[/tex]

    [tex]\color{red}\longrightarrow{}[/tex][tex]\rm{x^2 + x^2 + 2x + 1 = 481}[/tex]

    [tex]\color{red}\longrightarrow{}[/tex][tex]\rm{2x^2 + 2x + 1 – 481 = 0}[/tex]

    [tex]\color{red}\longrightarrow{}[/tex][tex]\rm{2x^2 + 2x – 480 = 0}[/tex]

    [tex]\underline\bold\color{purple}{Simplify,}[/tex]

    [tex]\sf{Divide\: by\: 2}[/tex]

    [tex]\rm{x^2 + x – 240 = 0}[/tex]

    [tex]\sf{Factors \:to}[/tex]

    [tex]\rm{(x+16)(x-15) = 0}[/tex]

    [tex]\sf{positive \:solution}[/tex]

    x=15 & 16 are the integers

    [tex]\tt{See \:if\: that\: works}[/tex]

    [tex]\color{teal}\underline{\underline{ \tt{{ \boxed {15^2 + 16^2 = 225 + 256 = 481} }}}}[/tex]

    ─━─━─━─━─━─━─━─━─━─━─━─━─

    Thankyou 🙂

    Reply

Leave a Comment