Given X + Y = [tex]\left[\begin{array}{ccc}1&2\\1&1\\\end{array}\right][/tex] and X – Y = [tex]\left[\begin{array}{ccc}3&0\\-1&1\\\end{array}\right][/tex]. Find X and Y ? About the author Peyton
Answer:- Given:- \begin{gathered} \sf \: X + Y= \begin{bmatrix} \sf \: 1& \sf \: 2 \\ \sf \: 1& \sf \: 1 \end{bmatrix} \: \: \: – \: equation \: (1)\end{gathered} X+Y=[ 1 1 2 1 ]−equation(1) And, \begin{gathered} \sf \: X – Y = \begin{bmatrix} \sf \: 3& \sf \: 0 \\ \sf \: – 1& \sf \: 1 \end{bmatrix} \: \: – \: \: equation \: (2)\end{gathered} X−Y=[ 3 −1 0 1 ]−equation(2) Add equations (1) & (2) \begin{gathered} \implies \sf \: X + Y + X – Y = \begin{bmatrix} \sf \: 1& \sf \: 2 \\ \sf \: 1& \sf \: 1 \end{bmatrix} + \begin{bmatrix} \sf \: 3& \sf \: 0 \\ \sf \: – 1& \sf \: 1 \end{bmatrix} \\ \\ \\ \implies \sf \:2X = \begin{bmatrix} \sf \: 1 + 3& \sf \: 2 + 0\\ \sf \: 1 – 1& \sf \: 1 + 1 \end{bmatrix} \\ \\ \\ \implies \sf \:2X = \begin{bmatrix} \sf \: 4& \sf \: 2 \\ \sf \: 0& \sf \: 2\end{bmatrix} \\ \\ \\ \implies \sf \: X = \begin{bmatrix} \sf \: \frac{4}{2} & \sf \: \frac{2}{2} \\ \\ \sf \: \frac{0}{2} & \sf \: \frac{2}{2} \end{bmatrix} \\ \\ \\ \sf \implies \red{X = \begin{bmatrix} \sf \: 2& \sf \: 1 \\ \sf \: 0& \sf \: 1\end{bmatrix}}\end{gathered} ⟹X+Y+X−Y=[ 1 1 2 1 ]+[ 3 −1 0 1 ] ⟹2X=[ 1+3 1−1 2+0 1+1 ] ⟹2X=[ 4 0 2 2 ] ⟹X= ⎣ ⎢ ⎡ 2 4 2 0 2 2 2 2 ⎦ ⎥ ⎤ ⟹X=[ 2 0 1 1 ] Substitute the value of X in equation (1). \begin{gathered} \implies \sf \: \begin{bmatrix} \sf \: 2& \sf \: 1 \\ \sf \: 0& \sf \: 1\end{bmatrix} + Y = \begin{bmatrix} \sf \: 1& \sf \: 2 \\ \sf \: 1& \sf \: 1 \end{bmatrix} \\ \\ \\ \implies \sf \:Y = \begin{bmatrix} \sf \: 1& \sf \: 2 \\ \sf \: 1& \sf \: 1 \end{bmatrix} – \begin{bmatrix} \sf \: 2& \sf \: 1 \\ \sf \: 0& \sf \: 1\end{bmatrix} \\ \\ \\ \implies \sf \:Y =\begin{bmatrix} \sf \: 1 – 2& \sf \: 2 – 1 \\ \sf \: 1 – 0& \sf \: 1 – 1 \end{bmatrix} \\ \\ \\ \implies \sf \red{ \:Y =\begin{bmatrix} \sf \: – 1 & \sf \: 1 \\ \sf \: 1 & \sf \: 0 \end{bmatrix}}\end{gathered} ⟹[ 2 0 1 1 ]+Y=[ 1 1 2 1 ] ⟹Y=[ 1 1 2 1 ]−[ 2 0 1 1 ] ⟹Y=[ 1−2 1−0 2−1 1−1 ] ⟹Y=[ −1 1 1 0 ] Reply
Answer:– Given:- [tex] \sf \: X + Y= \begin{bmatrix} \sf \: 1& \sf \: 2 \\ \sf \: 1& \sf \: 1 \end{bmatrix} \: \: \: – \: equation \: (1)[/tex] And, [tex] \sf \: X – Y = \begin{bmatrix} \sf \: 3& \sf \: 0 \\ \sf \: – 1& \sf \: 1 \end{bmatrix} \: \: – \: \: equation \: (2)[/tex] Add equations (1) & (2) [tex] \implies \sf \: X + Y + X – Y = \begin{bmatrix} \sf \: 1& \sf \: 2 \\ \sf \: 1& \sf \: 1 \end{bmatrix} + \begin{bmatrix} \sf \: 3& \sf \: 0 \\ \sf \: – 1& \sf \: 1 \end{bmatrix} \\ \\ \\ \implies \sf \:2X = \begin{bmatrix} \sf \: 1 + 3& \sf \: 2 + 0\\ \sf \: 1 – 1& \sf \: 1 + 1 \end{bmatrix} \\ \\ \\ \implies \sf \:2X = \begin{bmatrix} \sf \: 4& \sf \: 2 \\ \sf \: 0& \sf \: 2\end{bmatrix} \\ \\ \\ \implies \sf \: X = \begin{bmatrix} \sf \: \frac{4}{2} & \sf \: \frac{2}{2} \\ \\ \sf \: \frac{0}{2} & \sf \: \frac{2}{2} \end{bmatrix} \\ \\ \\ \sf \implies \red{X = \begin{bmatrix} \sf \: 2& \sf \: 1 \\ \sf \: 0& \sf \: 1\end{bmatrix}}[/tex] Substitute the value of X in equation (1). [tex] \implies \sf \: \begin{bmatrix} \sf \: 2& \sf \: 1 \\ \sf \: 0& \sf \: 1\end{bmatrix} + Y = \begin{bmatrix} \sf \: 1& \sf \: 2 \\ \sf \: 1& \sf \: 1 \end{bmatrix} \\ \\ \\ \implies \sf \:Y = \begin{bmatrix} \sf \: 1& \sf \: 2 \\ \sf \: 1& \sf \: 1 \end{bmatrix} – \begin{bmatrix} \sf \: 2& \sf \: 1 \\ \sf \: 0& \sf \: 1\end{bmatrix} \\ \\ \\ \implies \sf \:Y =\begin{bmatrix} \sf \: 1 – 2& \sf \: 2 – 1 \\ \sf \: 1 – 0& \sf \: 1 – 1 \end{bmatrix} \\ \\ \\ \implies \sf \red{ \:Y =\begin{bmatrix} \sf \: – 1 & \sf \: 1 \\ \sf \: 1 & \sf \: 0 \end{bmatrix}}[/tex] Reply
Answer:-
Given:-
\begin{gathered} \sf \: X + Y= \begin{bmatrix} \sf \: 1& \sf \: 2 \\ \sf \: 1& \sf \: 1 \end{bmatrix} \: \: \: – \: equation \: (1)\end{gathered}
X+Y=[
1
1
2
1
]−equation(1)
And,
\begin{gathered} \sf \: X – Y = \begin{bmatrix} \sf \: 3& \sf \: 0 \\ \sf \: – 1& \sf \: 1 \end{bmatrix} \: \: – \: \: equation \: (2)\end{gathered}
X−Y=[
3
−1
0
1
]−equation(2)
Add equations (1) & (2)
\begin{gathered} \implies \sf \: X + Y + X – Y = \begin{bmatrix} \sf \: 1& \sf \: 2 \\ \sf \: 1& \sf \: 1 \end{bmatrix} + \begin{bmatrix} \sf \: 3& \sf \: 0 \\ \sf \: – 1& \sf \: 1 \end{bmatrix} \\ \\ \\ \implies \sf \:2X = \begin{bmatrix} \sf \: 1 + 3& \sf \: 2 + 0\\ \sf \: 1 – 1& \sf \: 1 + 1 \end{bmatrix} \\ \\ \\ \implies \sf \:2X = \begin{bmatrix} \sf \: 4& \sf \: 2 \\ \sf \: 0& \sf \: 2\end{bmatrix} \\ \\ \\ \implies \sf \: X = \begin{bmatrix} \sf \: \frac{4}{2} & \sf \: \frac{2}{2} \\ \\ \sf \: \frac{0}{2} & \sf \: \frac{2}{2} \end{bmatrix} \\ \\ \\ \sf \implies \red{X = \begin{bmatrix} \sf \: 2& \sf \: 1 \\ \sf \: 0& \sf \: 1\end{bmatrix}}\end{gathered}
⟹X+Y+X−Y=[
1
1
2
1
]+[
3
−1
0
1
]
⟹2X=[
1+3
1−1
2+0
1+1
]
⟹2X=[
4
0
2
2
]
⟹X=
⎣
⎢
⎡
2
4
2
0
2
2
2
2
⎦
⎥
⎤
⟹X=[
2
0
1
1
]
Substitute the value of X in equation (1).
\begin{gathered} \implies \sf \: \begin{bmatrix} \sf \: 2& \sf \: 1 \\ \sf \: 0& \sf \: 1\end{bmatrix} + Y = \begin{bmatrix} \sf \: 1& \sf \: 2 \\ \sf \: 1& \sf \: 1 \end{bmatrix} \\ \\ \\ \implies \sf \:Y = \begin{bmatrix} \sf \: 1& \sf \: 2 \\ \sf \: 1& \sf \: 1 \end{bmatrix} – \begin{bmatrix} \sf \: 2& \sf \: 1 \\ \sf \: 0& \sf \: 1\end{bmatrix} \\ \\ \\ \implies \sf \:Y =\begin{bmatrix} \sf \: 1 – 2& \sf \: 2 – 1 \\ \sf \: 1 – 0& \sf \: 1 – 1 \end{bmatrix} \\ \\ \\ \implies \sf \red{ \:Y =\begin{bmatrix} \sf \: – 1 & \sf \: 1 \\ \sf \: 1 & \sf \: 0 \end{bmatrix}}\end{gathered}
⟹[
2
0
1
1
]+Y=[
1
1
2
1
]
⟹Y=[
1
1
2
1
]−[
2
0
1
1
]
⟹Y=[
1−2
1−0
2−1
1−1
]
⟹Y=[
−1
1
1
0
]
Answer:–
Given:-
[tex] \sf \: X + Y= \begin{bmatrix} \sf \: 1& \sf \: 2 \\ \sf \: 1& \sf \: 1 \end{bmatrix} \: \: \: – \: equation \: (1)[/tex]
And,
[tex] \sf \: X – Y = \begin{bmatrix} \sf \: 3& \sf \: 0 \\ \sf \: – 1& \sf \: 1 \end{bmatrix} \: \: – \: \: equation \: (2)[/tex]
Add equations (1) & (2)
[tex] \implies \sf \: X + Y + X – Y = \begin{bmatrix} \sf \: 1& \sf \: 2 \\ \sf \: 1& \sf \: 1 \end{bmatrix} + \begin{bmatrix} \sf \: 3& \sf \: 0 \\ \sf \: – 1& \sf \: 1 \end{bmatrix} \\ \\ \\ \implies \sf \:2X = \begin{bmatrix} \sf \: 1 + 3& \sf \: 2 + 0\\ \sf \: 1 – 1& \sf \: 1 + 1 \end{bmatrix} \\ \\ \\ \implies \sf \:2X = \begin{bmatrix} \sf \: 4& \sf \: 2 \\ \sf \: 0& \sf \: 2\end{bmatrix} \\ \\ \\ \implies \sf \: X = \begin{bmatrix} \sf \: \frac{4}{2} & \sf \: \frac{2}{2} \\ \\ \sf \: \frac{0}{2} & \sf \: \frac{2}{2} \end{bmatrix} \\ \\ \\ \sf \implies \red{X = \begin{bmatrix} \sf \: 2& \sf \: 1 \\ \sf \: 0& \sf \: 1\end{bmatrix}}[/tex]
Substitute the value of X in equation (1).
[tex] \implies \sf \: \begin{bmatrix} \sf \: 2& \sf \: 1 \\ \sf \: 0& \sf \: 1\end{bmatrix} + Y = \begin{bmatrix} \sf \: 1& \sf \: 2 \\ \sf \: 1& \sf \: 1 \end{bmatrix} \\ \\ \\ \implies \sf \:Y = \begin{bmatrix} \sf \: 1& \sf \: 2 \\ \sf \: 1& \sf \: 1 \end{bmatrix} – \begin{bmatrix} \sf \: 2& \sf \: 1 \\ \sf \: 0& \sf \: 1\end{bmatrix} \\ \\ \\ \implies \sf \:Y =\begin{bmatrix} \sf \: 1 – 2& \sf \: 2 – 1 \\ \sf \: 1 – 0& \sf \: 1 – 1 \end{bmatrix} \\ \\ \\ \implies \sf \red{ \:Y =\begin{bmatrix} \sf \: – 1 & \sf \: 1 \\ \sf \: 1 & \sf \: 0 \end{bmatrix}}[/tex]