знайдіть площу сектора круга радіус якого 6 см якщо відповідний йому центральний кут дорівнює 100° About the author Claire
Given: знайдіть площу сектора круга радіус якого 6 см якщо відповідний йому центральний кут дорівнює 100° Find the area of a sector of a circle whose radius is 6 cm if the corresponding central angle is 100° To find: The area of the sector Solution: The radius of the circle, r = 6 cm The central angle of the circle, θ = 100° Since the θ given in the question is measured in degrees, so we will use the following formula for calculating the area of the sector: [tex]\boxed{\bold{Area \:of\:a\:sector = \frac{\theta}{360\°} \times \pi r^2}}[/tex] Now, by substituting the given values of θ and r in the above formula, we get The area of the sector of the given circle is, = [tex]\frac{100\° }{360\°} \times \frac{22}{7} \times 6^2}}[/tex] = [tex]\frac{100\° }{360\°} \times \frac{22}{7} \times 36}}[/tex] = [tex]\frac{100\° }{10\°} \times \frac{22}{7} }}[/tex] = [tex]10 \times \frac{22}{7}[/tex] = [tex]\frac{220}{7}[/tex] = [tex]\bold{31.42 \:cm^2}[/tex] Thus, the area of a sector of the circle is → 31.42 cm². ——————————————————————————————- Also View: find the area of the sector of a circle with a radius of 10 cm and central angle 60degree. Also, find the corresponding major sector of the circle? brainly.in/question/2159489 Find the area of a sector of a circle where the central angle is 30° and the radius of the circle is 42 cm. brainly.in/question/13221252 Find the area of a sector of a circle and length of the minor arc of radius 21 cm and central angle 120 degree brainly.in/question/6108112 Reply
Given:
знайдіть площу сектора круга радіус якого 6 см якщо відповідний йому центральний кут дорівнює 100°
Find the area of a sector of a circle whose radius is 6 cm if the corresponding central angle is 100°
To find:
The area of the sector
Solution:
The radius of the circle, r = 6 cm
The central angle of the circle, θ = 100°
Since the θ given in the question is measured in degrees, so we will use the following formula for calculating the area of the sector:
[tex]\boxed{\bold{Area \:of\:a\:sector = \frac{\theta}{360\°} \times \pi r^2}}[/tex]
Now, by substituting the given values of θ and r in the above formula, we get
The area of the sector of the given circle is,
= [tex]\frac{100\° }{360\°} \times \frac{22}{7} \times 6^2}}[/tex]
= [tex]\frac{100\° }{360\°} \times \frac{22}{7} \times 36}}[/tex]
= [tex]\frac{100\° }{10\°} \times \frac{22}{7} }}[/tex]
= [tex]10 \times \frac{22}{7}[/tex]
= [tex]\frac{220}{7}[/tex]
= [tex]\bold{31.42 \:cm^2}[/tex]
Thus, the area of a sector of the circle is → 31.42 cm².
——————————————————————————————-
Also View:
find the area of the sector of a circle with a radius of 10 cm and central angle 60degree. Also, find the corresponding major sector of the circle?
brainly.in/question/2159489
Find the area of a sector of a circle where the central angle is 30° and the radius of the circle is 42 cm.
brainly.in/question/13221252
Find the area of a sector of a circle and length of the minor arc of radius 21 cm and central angle 120 degree
brainly.in/question/6108112