if the length of the diagonal of a cube 4√3then let us calculate the total surface area of the cube About the author Kennedy
Given:– Length of the diagonal of a cube = 4√3 To Find:– Total Surface Area of the Cube Formula Used:– [tex]{\boxed{\bf{Pythagoras\:theorem:\: H^2=B^2+P^2}}}[/tex] [tex]{\boxed{\bf{TSA\:of\:Cube=6a^2}}}[/tex] Solution:– Firstly, [tex]\bf :\implies\: H^2=B^2+P^2[/tex] [tex]\bf :\implies\: (4\sqrt{3})^2=2B^2[/tex] [tex]\bf :\implies\: B^2=\dfrac{48}{2}[/tex] [tex]\bf :\implies\: B^2=24[/tex] [tex]\bf :\implies\: B=\sqrt{24}[/tex] Side of the Square = √24 Now, [tex]\bf :\implies\:TSA\:of\:Cube=6a^2[/tex] [tex]\bf :\implies\:TSA\:of\:Cube=6\sqrt{24}^2[/tex] [tex]\bf :\implies\:TSA\:of\:Cube=6\times 24[/tex] [tex]\bf :\implies\:TSA\:of\:Cube=144[/tex] Hence, The Total Surface Area of the Cube is 144 square units. ━━━━━━━━━━━━━━━━━━━━━━━━━ Reply
Given:–
To Find:–
Formula Used:–
Solution:–
Firstly,
[tex]\bf :\implies\: H^2=B^2+P^2[/tex]
[tex]\bf :\implies\: (4\sqrt{3})^2=2B^2[/tex]
[tex]\bf :\implies\: B^2=\dfrac{48}{2}[/tex]
[tex]\bf :\implies\: B^2=24[/tex]
[tex]\bf :\implies\: B=\sqrt{24}[/tex]
Side of the Square = √24
Now,
[tex]\bf :\implies\:TSA\:of\:Cube=6a^2[/tex]
[tex]\bf :\implies\:TSA\:of\:Cube=6\sqrt{24}^2[/tex]
[tex]\bf :\implies\:TSA\:of\:Cube=6\times 24[/tex]
[tex]\bf :\implies\:TSA\:of\:Cube=144[/tex]
Hence, The Total Surface Area of the Cube is 144 square units.
━━━━━━━━━━━━━━━━━━━━━━━━━