7.
As x approaches a, evaluate:
[tex] {x}^{n } + a {x}^{n – 1} + {a}^{2} {x}^{n – 2} + … + {a}^{n} [/tex]

7.
As x approaches a, evaluate:
[tex] {x}^{n } + a {x}^{n – 1} + {a}^{2} {x}^{n – 2} + … + {a}^{n} [/tex]

About the author
Genesis

2 thoughts on “7.<br />As x approaches a, evaluate: <br />[tex] {x}^{n } + a {x}^{n – 1} + {a}^{2} {x}^{n – 2} + … + {a}^{n} [/tex]<br />​”

  1. Answer:

    tex]\orange{\bold{\underbrace{\overbrace{❥Answer᎓}}}}[/tex]

    Integrate the function

    [tex]\huge\green\tt\frac{ \sqrt{tanx} }{sinxcosx}}[/tex]

    ⇛[tex]\huge\tt\frac{ \sqrt{tanx} }{sinxcosx}[/tex]

    ㅤ ㅤ ㅤ ㅤ ㅤ

    ⇛[tex]\huge\tt \frac{ \sqrt{tanx} }{sinxcosx \times \frac{cosx}{cosx}}[/tex]

    ㅤ ㅤ ㅤ ㅤ ㅤ

    ⇛[tex]\huge\tt \frac{ \sqrt{tanx} }{sinx \times \frac{ {cos}^{2} x}{cosx}}[/tex] ㅤ ㅤ ㅤ

    ⇛ [tex]\huge\tt\frac{ \sqrt{tanx} }{ {cos}^{2} x \times \frac{sinx}{cosx} }[/tex]

    ㅤ ㅤ ㅤ ㅤ ㅤ

    ⇛[tex]\huge\tt\frac{ \sqrt{tanx} }{ {cos}^{2}x \times tanx }[/tex]

    ⇛[tex]\huge\tt {tan}^{ \frac{1}{2} – 1 } \times \frac{1}{ {cos}^{2} x}[/tex]ㅤ ㅤ ㅤ ㅤ ㅤ

    ⇛[tex]\huge\tt {(tan)}^{ – \frac{ 1}{2} } \times \frac{1}{ {cos}^{2}x } = {(tanx)}^{ – \frac{1}{2} } \times {sec}^{2} x⇛(tan)[/tex]

    ㅤ ㅤ ㅤ ㅤ ㅤ

    ⇛[tex]\huge\tt {(tan)}^{ – \frac{ 1}{2} } \times \frac{1}{ {cos}^{2}x } = ∫ {(tanx)}^{ – \frac{1}{2} } \times {sec}^{2} x \times dx⇛(tan)[/tex]

    ㅤ ㅤ ㅤ ㅤ ㅤ

    [tex]\bold\blue{☛\: Let tanx=t}[/tex]

    [tex]\bold\blue{☛ \:Differentiating \: both \: sides \: w.r.t.x}[/tex]

    ㅤ ㅤ ㅤ ㅤ ㅤ

    ⇛[tex]\huge\tt {sec}^{2} x = \frac{dt}{dx}[/tex]

    ⇛[tex]\huge\tt{dx \frac{dt}{ {sec}^{2}x }}[/tex]

    ㅤ ㅤ ㅤ ㅤ ㅤ

    ⇛[tex]\huge\tt∴∫ {(tanx)}^{ – \frac{1}{2} } \times {sec}^{2} x \times dx[/tex]

    ⇛[tex]\huge\tt ∫ {(t)}^{ – \frac{1}{2} } \times {sec}^{2} x \times \frac{dt}{ {sec}^{2}x }[/tex]

    ⇛[tex]\huge\tt ∫ {t}^{ – \frac{1}{2} }[/tex]ㅤ ㅤ

    ⇛ [tex]\huge\tt\frac{ {t}^{ – \frac{1}{2} + 1} }{ – \frac{1}{2} + 1 }[/tex]

    ⇛ [tex]\huge\tt \frac{ {t}^{ \frac{1}{2} } }{ \frac{1}{2} } + c = 2 {t}^{ \frac{1}{2} } + c = 2 \sqrt{t}[/tex]

    ⇛[tex]\huge2 \sqrt{t} + c = 2 \sqrt{tanx}[/tex]

    ╚════════════

    Reply
  2. Answer:

    [tex]⇛\huge2 \sqrt{t} + c = 2 \sqrt{tanx}2t+c=2tanx

    ╚════════════

    [/tex]

    is the answer. hope it helps you. thanks.

    Reply

Leave a Reply to Isabella Cancel reply