Answer: Correct Question If cos∅ + sin∅ = √2 cos∅, then prove that cos∅ – sin∅ = √2 sin∅. Proof → cos∅ + sin∅ = √2 cos∅ → sin∅ = √2 cos∅ – cos∅ → sin∅ = cos∅(√2 – 1) → sin∅/(√2 – 1) = cos∅ On rationalizing we get, → sin∅/(√2 – 1) × (√2 + 1)/(√2 + 1) = cos∅ → sin∅(√2 + 1)/(2 – 1) = cos∅ → √2 sin∅ + sin∅ = cos∅ → √2 sin∅ = cos∅ – sin∅ Or cos∅ – sin∅ = √2 sin∅ Hence Proved HOPE THIS HELPS YOU ! Reply
Answer:
Correct Question
If cos∅ + sin∅ = √2 cos∅, then prove that cos∅ – sin∅ = √2 sin∅.
Proof
→ cos∅ + sin∅ = √2 cos∅
→ sin∅ = √2 cos∅ – cos∅
→ sin∅ = cos∅(√2 – 1)
→ sin∅/(√2 – 1) = cos∅
On rationalizing we get,
→ sin∅/(√2 – 1) × (√2 + 1)/(√2 + 1) = cos∅
→ sin∅(√2 + 1)/(2 – 1) = cos∅
→ √2 sin∅ + sin∅ = cos∅
→ √2 sin∅ = cos∅ – sin∅
Or cos∅ – sin∅ = √2 sin∅
Hence Proved
HOPE THIS HELPS YOU !
Answer:
please refer to the image uploaded