5) Solve x2 – 2x + 3 = 0 by using the quadratic formula​

5) Solve x2 – 2x + 3 = 0 by using the quadratic formula​

About the author
Allison

2 thoughts on “<br />5) Solve x2 – 2x + 3 = 0 by using the quadratic formula​”

  1. [tex]\begin{gathered}\frak{ \pink{Given : }}\sf{\;\;\; x^2 – 2x + 3 = \bf{0}}\end{gathered} [/tex]

    [tex] \\ [/tex]

    [tex]\begin{gathered}\frak{ \pink{To \: find : }}\sf{\;\;\; Value \: of \: x \: by \: using \: quadratic \: formula.}\end{gathered} [/tex]

    ⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

    [tex]\begin{gathered}\frak{ \pink{Solution : }}\end{gathered} [/tex]

    [tex] \\ [/tex]

    Given that : x² – 2x + 3 = 0 and it is a quadratic equation in form of ax² + bx + c = 0.

    [tex] \\ [/tex]

    Here,

    • a = 1
    • b = – 2
    • c = 3

    [tex] \\ [/tex]

    Quadratic formula :

    • [tex]\underline{\boxed{\bf x = \dfrac{-b\pm \sqrt{b^2 – 4ac}}{2a} }} [/tex]

    [tex] \\ [/tex]

    Now, by substituting values :

    [tex] \sf : \implies x = \dfrac{-(-2)\pm \sqrt{(-2)^2 – 4(1)(3)}}{2(1)} [/tex]

    [tex] \sf : \implies x = \dfrac{2\pm \sqrt{4 – 4\times 1 \times 3}}{2\times 1} [/tex]

    [tex] \sf : \implies x = \dfrac{2\pm \sqrt{4 – 12}}{2} [/tex]

    [tex] \sf : \implies x = \dfrac{2\pm \sqrt{- 8}}{2} [/tex]

    [tex] \sf : \implies x = \dfrac{2\pm \sqrt{2 \times 2 \times – 2}}{2} [/tex]

    [tex] \sf : \implies x = \dfrac{2\pm 2 \sqrt{- 2}}{2} [/tex]

    [tex] \sf : \implies x = \dfrac{\cancel{2}(1\pm \sqrt{- 2})}{\cancel{2}} [/tex]

    [tex] \sf : \implies x = 1\pm\sqrt{- 2}[/tex]

    [tex] \\ [/tex]

    [tex]\: \:\:\: \: \: \: \: \: \: \: \: \: \: \: \: \pink{\underline{\boxed{\pmb{\frak{x = 1+\sqrt{- 2} \:or\: x = 1- \sqrt{- 2}}}}}}\:\bigstar[/tex]

    ⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀

    [tex] \underline{ \bf Hence, \: value \: of \: x \: is \: \pink{1+\sqrt{- 2} \: or \: 1- \sqrt{- 2}}}.[/tex]

    Reply
  2. Answer:

    1+√2i and 1-√2i

    Step-by-step explanation:

    x2-2x+3 =0

    On solving using quadratic formula, we get the roots of equation as 1+√2i and 1-√2i.

    Hope, you get the answer. Please mark my answer as brainliest.

    Reply

Leave a Comment