5. In an acute angled AABC, sec (B + C – A) =12 and tan (C + A – B) = Find the three32.angles of AABC.C - About the author Vivian
Step-by-step explanation: We have , tan( A + B – C) = 1 and sec (B + C – A) = 2 ⇒ tan( A + B – C) = tan45 ∘ and sec (B + C – A) = sec60 ∘ ⇒ A + B – C =45 ∘ and B + C – A = 60 ∘ ⇒ ( A + B – C) + (B + C – A) = 45 ∘ +60 ∘ ⇒ 2B = 105 ∘ ⇒B=52 2 1 ∘ Putting B=52 2 1 ∘ in B + C – A = 60 ∘ , we get 52 2 1 ∘ +C−A=60 ∘ ⇒C−A=7 2 1 ∘ …(i) Also , in ΔABC , we have A + B + C = 180 ∘ ⇒A+52 2 1 ∘ +C=180 ∘ [∵B=52 21 ∘ ] ⇒C+A=127 21 ∘ …(ii) Adding and subtracting (i) and (ii) , we get , 2C = 135 ∘ and 2A = 120 ∘ ⇒C=67 21 ∘ and A = 60 ∘ Hence , A = 60 ∘ , B = 52 21 and C=67 21 ∘ Reply
Step-by-step explanation:
We have ,
tan( A + B – C) = 1 and sec (B + C – A) = 2
⇒ tan( A + B – C) = tan45
∘
and sec (B + C – A) = sec60
∘
⇒ A + B – C =45
∘
and B + C – A = 60
∘
⇒ ( A + B – C) + (B + C – A) = 45
∘
+60
∘
⇒ 2B = 105
∘
⇒B=52
2
1
∘
Putting B=52
2
1
∘
in B + C – A = 60
∘
, we get
52
2
1
∘
+C−A=60
∘
⇒C−A=7
2
1
∘
…(i)
Also , in ΔABC , we have
A + B + C = 180
∘
⇒A+52
2
1
∘
+C=180
∘
[∵B=52 21 ∘ ]
⇒C+A=127 21 ∘
…(ii)
Adding and subtracting (i) and (ii) , we get ,
2C = 135 ∘
and 2A = 120 ∘
⇒C=67 21 ∘
and A = 60 ∘
Hence , A = 60 ∘ , B = 52 21
and C=67 21 ∘