4) If A(1, 3) & B(2, 1) are points, find the equation of the focus of point P suchthat PA = PB(a) 2x + 4y – 5 = 0(c) 2x – 4y + 5 = 0(b) 2x – 4y – 5 = 0(d) 2x + 4y + 5 = 0 About the author Amara
Answer: C. 2x-4y+5=0 Step-by-step explanation: Here PA=PB PA²=PB² (X1-X2)²+(Y1-Y2)²=(X1-X2)²+(Y1-Y2)² (1-X)²+(3-Y)²=(2-X)²+(1-Y)² (1-2X+X²)+(9-6Y+Y²)=(4-4X+X²)+(1-2Y+Y²) 1-2X+X²+9-6Y+Y²=4-4X+X²+1-2Y+Y² 10-2X-6Y=5-4X-2Y 10-5= -4X+2X-2Y+6Y 5= -2X+4Y -2X+4Y-5=0 taking out subtraction sign common 2x-4y+5=0 Reply
Answer:
C. 2x-4y+5=0
Step-by-step explanation:
Here PA=PB
PA²=PB²
(X1-X2)²+(Y1-Y2)²=(X1-X2)²+(Y1-Y2)²
(1-X)²+(3-Y)²=(2-X)²+(1-Y)²
(1-2X+X²)+(9-6Y+Y²)=(4-4X+X²)+(1-2Y+Y²)
1-2X+X²+9-6Y+Y²=4-4X+X²+1-2Y+Y²
10-2X-6Y=5-4X-2Y
10-5= -4X+2X-2Y+6Y
5= -2X+4Y
-2X+4Y-5=0
taking out subtraction sign common
2x-4y+5=0