4. Find P(0), P(1) and P(2) for the polynomialP(t) = 2 + t + 2t square – t cube About the author Peyton
Given ⇒p(t)=2+t+2t²-t³ To Find The value at ⇒p(0) , p(1) and (2) Now take ⇒p(t)=2+t+2t²-t³ When P(0) ⇒P(0) = 2 + 0 + 2(0)t² – (0)³ ⇒p(0) = 2 WhenP(1) ⇒P(1) = 2 + 1 + 2(1)²-(1)³ ⇒P(1) = 3 + 2 – 1 ⇒P(1) = 5 – 1 ⇒P(1) = 4 When P(2) ⇒P(2) = 2 + 2 + 2(2)² – (2)³ ⇒p(2) = 4 + 2×4 – 8 ⇒P(2) = 4 + 8 – 8 ⇒P(2) = 4 Answer ⇒P(0) = 2 , P(1) = 4 And P(2) = 4 Reply
Given
⇒p(t)=2+t+2t²-t³
To Find The value at
⇒p(0) , p(1) and (2)
Now take
⇒p(t)=2+t+2t²-t³
When P(0)
⇒P(0) = 2 + 0 + 2(0)t² – (0)³
⇒p(0) = 2
WhenP(1)
⇒P(1) = 2 + 1 + 2(1)²-(1)³
⇒P(1) = 3 + 2 – 1
⇒P(1) = 5 – 1
⇒P(1) = 4
When P(2)
⇒P(2) = 2 + 2 + 2(2)² – (2)³
⇒p(2) = 4 + 2×4 – 8
⇒P(2) = 4 + 8 – 8
⇒P(2) = 4
Answer
⇒P(0) = 2 , P(1) = 4 And P(2) = 4
Answer............???