3) The angles of triangle are (x-40)º, (x-20)° and [ 1/2 x-10]Find the value of x. About the author Hailey
Answer: The value of x is 100. Step-by-step explanation: Given that: The angles of triangle. First angle = (x – 40)° Second angle = (x – 20)° Third angle = (½x – 10)° To Find: The value of x. We know that: Sum of angles of a triangle is equal to 180°. Finding the value of x: According to the question. ⟶ (x – 40) + (x – 20) + (½x – 10) = 180 ⟶ x – 40 + x – 20 + ½x – 10 = 180 ⟶ x + x + ½x – 40 – 20 – 10 = 180 ⟶ 2½x – 70 = 180 ⟶ 2½x = 180 + 70 ⟶ 2½x = 250 ⟶ (5/2)x = 250 ⟶ x = (250 × 2)/5 ⟶ x = 500/5 ⟶ x = 100 ∴ The value of x = 100 Reply
Sum of all angles of a triangle is [tex]\bold\orange{180°}[/tex] Solution First angle[tex]\bold\red{x=40°}[/tex] Second angle [tex]\bold\blue{x=-20°}[/tex] Third angle [tex]\bold\pink{x/2-10}[/tex] First angle+second angle+third angle=180° [tex]\bold\green{(x-40°)+(x-20°)+(x-x/2-10)=180°}[/tex] [tex]\bold\orange{x+x+x/2-10)-(40+20+10)=180°}[/tex] [tex]\bold\purple{5x/2=250°}[/tex] [tex]\bold{x=100°}[/tex] Reply
Answer:
Step-by-step explanation:
Given that:
The angles of triangle.
To Find:
We know that:
Finding the value of x:
According to the question.
⟶ (x – 40) + (x – 20) + (½x – 10) = 180
⟶ x – 40 + x – 20 + ½x – 10 = 180
⟶ x + x + ½x – 40 – 20 – 10 = 180
⟶ 2½x – 70 = 180
⟶ 2½x = 180 + 70
⟶ 2½x = 250
⟶ (5/2)x = 250
⟶ x = (250 × 2)/5
⟶ x = 500/5
⟶ x = 100
∴ The value of x = 100
Sum of all angles of a triangle is [tex]\bold\orange{180°}[/tex]
Solution
First angle[tex]\bold\red{x=40°}[/tex]
Second angle [tex]\bold\blue{x=-20°}[/tex]
Third angle [tex]\bold\pink{x/2-10}[/tex]
First angle+second angle+third angle=180°
[tex]\bold\green{(x-40°)+(x-20°)+(x-x/2-10)=180°}[/tex]
[tex]\bold\orange{x+x+x/2-10)-(40+20+10)=180°}[/tex]
[tex]\bold\purple{5x/2=250°}[/tex]
[tex]\bold{x=100°}[/tex]