3) If the roots of the given quadratic equation are real and equal then find
the value of m’.
(m-12) x² + 2 (m-12) x + 2

3) If the roots of the given quadratic equation are real and equal then find
the value of m’.
(m-12) x² + 2 (m-12) x + 2 = 0​

About the author
Emery

2 thoughts on “3) If the roots of the given quadratic equation are real and equal then find<br />the value of m’.<br />(m-12) x² + 2 (m-12) x + 2”

  1. [tex]\sf Equal \: and \: real \: roots \: ⇒b² – 4ac = 0 [/tex]

    [tex]\sf \therefore b² = 4ac[/tex]

    [tex]\sf \: a=(m−12),b=2(m−12),c=2[/tex]

    [tex]\sf [2(m−12)] {}^{2} =4(m−12)(2)[/tex]

    [tex]\sf4(m−12) {}^{2} =4(m−12)(2)[/tex]

    [tex]\sf (m−12) {}^{2} −2(m−12)=0[/tex]

    [tex]\sf(m−12)(m−12−2)=0 [/tex]

    [tex]\sf∴m=14,12[/tex]

    Reply
  2. Answer:

    14

    Step-by-step explanation:

    To roots to be real and equal, discriminant of the equation must be 0.

    Discriminant of ax² + bx + c = 0 is given by b² – 4ac. On comparing,

    a = (m – 12), b = 2(m – 12), c = 2

    ⇒ discriminant = 0

    ⇒ [2(m – 12)]² – 4(2)(m – 12) = 0

    ⇒ 4(m – 12)² – 8(m – 12) = 0

    ⇒ 4(m – 12)[ (m – 12) – 2 ] = 0

    ⇒ 4(m – 12)(m – 14) = 0

    ⇒ m – 12 = 0 or m – 14 = 0

    m = 12 or m = 14

    But for m = 12, (m – 12)x² + 2(m – 12) + 2 = 0 is not true.

    m = 14 must be preferred

    Reply

Leave a Reply to Ruby Cancel reply