3) If the roots of the given quadratic equation are real and equal then findthe value of m’.(m-12) x² + 2 (m-12) x + 2 = 0 About the author Emery
[tex]\sf Equal \: and \: real \: roots \: ⇒b² – 4ac = 0 [/tex] [tex]\sf \therefore b² = 4ac[/tex] [tex]\sf \: a=(m−12),b=2(m−12),c=2[/tex] [tex]\sf [2(m−12)] {}^{2} =4(m−12)(2)[/tex] [tex]\sf4(m−12) {}^{2} =4(m−12)(2)[/tex] [tex]\sf (m−12) {}^{2} −2(m−12)=0[/tex] [tex]\sf(m−12)(m−12−2)=0 [/tex] [tex]\sf∴m=14,12[/tex] Reply
Answer: 14 Step-by-step explanation: To roots to be real and equal, discriminant of the equation must be 0. Discriminant of ax² + bx + c = 0 is given by b² – 4ac. On comparing, a = (m – 12), b = 2(m – 12), c = 2 ⇒ discriminant = 0 ⇒ [2(m – 12)]² – 4(2)(m – 12) = 0 ⇒ 4(m – 12)² – 8(m – 12) = 0 ⇒ 4(m – 12)[ (m – 12) – 2 ] = 0 ⇒ 4(m – 12)(m – 14) = 0 ⇒ m – 12 = 0 or m – 14 = 0 ⇒ m = 12 or m = 14 But for m = 12, (m – 12)x² + 2(m – 12) + 2 = 0 is not true. m = 14 must be preferred Reply
[tex]\sf Equal \: and \: real \: roots \: ⇒b² – 4ac = 0 [/tex]
[tex]\sf \therefore b² = 4ac[/tex]
[tex]\sf \: a=(m−12),b=2(m−12),c=2[/tex]
[tex]\sf [2(m−12)] {}^{2} =4(m−12)(2)[/tex]
[tex]\sf4(m−12) {}^{2} =4(m−12)(2)[/tex]
[tex]\sf (m−12) {}^{2} −2(m−12)=0[/tex]
[tex]\sf(m−12)(m−12−2)=0 [/tex]
[tex]\sf∴m=14,12[/tex]
Answer:
14
Step-by-step explanation:
To roots to be real and equal, discriminant of the equation must be 0.
Discriminant of ax² + bx + c = 0 is given by b² – 4ac. On comparing,
a = (m – 12), b = 2(m – 12), c = 2
⇒ discriminant = 0
⇒ [2(m – 12)]² – 4(2)(m – 12) = 0
⇒ 4(m – 12)² – 8(m – 12) = 0
⇒ 4(m – 12)[ (m – 12) – 2 ] = 0
⇒ 4(m – 12)(m – 14) = 0
⇒ m – 12 = 0 or m – 14 = 0
⇒ m = 12 or m = 14
But for m = 12, (m – 12)x² + 2(m – 12) + 2 = 0 is not true.
m = 14 must be preferred