(200) to the power – 10 + x (20) to the power 10 x (2) to the power 10 = (8) to the power 50 About the author Josephine
Answer: Some trigonometric solutions based problems on trigonometric ratios are shown here with the step-by-step explanation. 1. If sin θ = 8/17, find other trigonometric ratios of <θ. Solution: Problems on Trigonometric Ratios 0Save Let us draw a ∆ OMP in which ∠M = 90°. Then sin θ = MP/OP = 8/17. Let MP = 8k and OP = 17k, where k is positive. By Pythagoras’ theorem, we get OP2 = OM2 + MP2 ⇒ OM2 = OP2 – MP2 ⇒ OM2 = [(17k)2 – (8k)2] ⇒ OM2 = [289k2 – 64k2] ⇒ OM2 = 225k2 ⇒ OM = √(225k2) ⇒ OM = 15k Therefore, sin θ = MP/OP = 8k/17k = 8/17 cos θ = OM/OP = 15k/17k = 15/17 tan θ = Sin θ/Cos θ = (8/17 × 17/15) = 8/15 csc θ = 1/sin θ = 17/8 sec θ = 1/cos θ = 17/15 and cot θ = 1/tan θ = 15/8. Step-by-step explanation: Some trigonometric solutions based problems on trigonometric ratios are shown here with the step-by-step explanation. 1. If sin θ = 8/17, find other trigonometric ratios of <θ. Solution: Problems on Trigonometric Ratios 0Save Let us draw a ∆ OMP in which ∠M = 90°. Then sin θ = MP/OP = 8/17. Let MP = 8k and OP = 17k, where k is positive. By Pythagoras’ theorem, we get OP2 = OM2 + MP2 ⇒ OM2 = OP2 – MP2 ⇒ OM2 = [(17k)2 – (8k)2] ⇒ OM2 = [289k2 – 64k2] ⇒ OM2 = 225k2 ⇒ OM = √(225k2) ⇒ OM = 15k Therefore, sin θ = MP/OP = 8k/17k = 8/17 cos θ = OM/OP = 15k/17k = 15/17 tan θ = Sin θ/Cos θ = (8/17 × 17/15) = 8/15 csc θ = 1/sin θ = 17/8 sec θ = 1/cos θ = 17/15 and cot θ = 1/tan θ = 15/8. Reply
Answer:
Some trigonometric solutions based problems on trigonometric ratios are shown here with the step-by-step explanation.
1. If sin θ = 8/17, find other trigonometric ratios of <θ.
Solution:
Problems on Trigonometric Ratios
0Save
Let us draw a ∆ OMP in which ∠M = 90°.
Then sin θ = MP/OP = 8/17.
Let MP = 8k and OP = 17k, where k is positive.
By Pythagoras’ theorem, we get
OP2 = OM2 + MP2
⇒ OM2 = OP2 – MP2
⇒ OM2 = [(17k)2 – (8k)2]
⇒ OM2 = [289k2 – 64k2]
⇒ OM2 = 225k2
⇒ OM = √(225k2)
⇒ OM = 15k
Therefore, sin θ = MP/OP = 8k/17k = 8/17
cos θ = OM/OP = 15k/17k = 15/17
tan θ = Sin θ/Cos θ = (8/17 × 17/15) = 8/15
csc θ = 1/sin θ = 17/8
sec θ = 1/cos θ = 17/15 and
cot θ = 1/tan θ = 15/8.
Step-by-step explanation:
Some trigonometric solutions based problems on trigonometric ratios are shown here with the step-by-step explanation.
1. If sin θ = 8/17, find other trigonometric ratios of <θ.
Solution:
Problems on Trigonometric Ratios
0Save
Let us draw a ∆ OMP in which ∠M = 90°.
Then sin θ = MP/OP = 8/17.
Let MP = 8k and OP = 17k, where k is positive.
By Pythagoras’ theorem, we get
OP2 = OM2 + MP2
⇒ OM2 = OP2 – MP2
⇒ OM2 = [(17k)2 – (8k)2]
⇒ OM2 = [289k2 – 64k2]
⇒ OM2 = 225k2
⇒ OM = √(225k2)
⇒ OM = 15k
Therefore, sin θ = MP/OP = 8k/17k = 8/17
cos θ = OM/OP = 15k/17k = 15/17
tan θ = Sin θ/Cos θ = (8/17 × 17/15) = 8/15
csc θ = 1/sin θ = 17/8
sec θ = 1/cos θ = 17/15 and
cot θ = 1/tan θ = 15/8.