107. In what time will Rs.1200 earn an interest
of Rs.240 at 5%
a) 4 years
b) 3 years
c) 2 years
d) 5 years
107. In what time will Rs.1200 earn an interest
2 thoughts on “107. In what time will Rs.1200 earn an interest<br />of Rs.240 at 5%<br />a) 4 years<br />b) 3 years<br />c) 2 years<br />d) 5 yea”
Leave a Comment
You must be logged in to post a comment.
Given:
What To Find:
We have to find the time of the following.
Formula Needed:
[tex]\it SI = \dfrac{P \times R \times T}{100}[/tex]
Where,
Solution:
Using the formula,
[tex]\sf \implies SI = \dfrac{P \times R \times T}{100}[/tex]
Substitute the values,
[tex]\sf \implies 240 = \dfrac{1200 \times 5 \times T}{100}[/tex]
Cancel the zeros,
[tex]\sf \implies 240 = 12 \times 5 \times T[/tex]
Multiply 12 by 5,
[tex]\sf \implies 240 = 60 \times T[/tex]
Take 60 to LHS,
[tex]\sf \implies \dfrac{240}{60} = T[/tex]
Cancel the zeros,
[tex]\sf \implies \dfrac{24}{6} = T[/tex]
Divide 24 by 6,
[tex]\sf \implies 4 \: years = T[/tex]
Final Answer:
The time is 4 years that is option A.
Given:
Principal = Rs. 1200
Simple Interest = Rs. 240
Rate = 5 %
What To Find:
We have to find the time of the following.
Formula Needed:
[tex]\it SI = \dfrac{P \times R \times T}{100}[/tex]
Where,
SI = Simple Interest
P = Principal
R = Rate
T = Time
Solution:
Using the formula,
[tex]\sf \implies SI = \dfrac{P \times R \times T}{100}[/tex]
Substitute the values,
[tex]\sf \implies 240 = \dfrac{1200 \times 5 \times T}{100}[/tex]
Cancel the zeros,
[tex]\sf \implies 240 = 12 \times 5 \times T[/tex]
Multiply 12 by 5,
[tex]\sf \implies 240 = 60 \times T[/tex]
Take 60 to LHS,
[tex]\sf \implies \dfrac{240}{60} = T[/tex]
Cancel the zeros,
[tex]\sf \implies \dfrac{24}{6} = T[/tex]
Divide 24 by 6,
[tex]\sf \implies 4 \: years = T[/tex]
Final Answer:
The time is 4 years that is option A.