1) Solve the following quadratic equation by factorization method. 3p2 + 8p+ 5= 0 About the author Quinn
Answer: 3p2+8p+5=0 3p2+3p+5p+5=0 (8p can be written as 8p=3p+5p) 3p(p+1)+5(p+1)=0 (p+1) (3p+5)=0 Either (p+1)=0 or (3p+5)=0 putting (p+1)=0 p+1=0 p= -1 putting (3p+5)=0 3p+5=0 3p= -5 p= -5/3 Reply
Answer: [tex]p = \frac{-5}{3} or (-1)[/tex] Step-by-step explanation: [tex]3p^{2} + 8p + 5 = 0\\\\ => 3p^{2} + 5p + 3p + 5 = 0\\\\=> p(3p + 5) + 1(3p + 5) = 0\\\\=>(3p + 5)(p + 1) = 0\\\\=> 3p + 5 = 0 \\or \\=> p + 1 = 0\\\\Therefore, p = \frac{-5}{3} or (-1).[/tex] Reply
Answer:
3p2+8p+5=0
3p2+3p+5p+5=0 (8p can be written as 8p=3p+5p)
3p(p+1)+5(p+1)=0
(p+1) (3p+5)=0
Either (p+1)=0 or (3p+5)=0
putting (p+1)=0
p+1=0
p= -1
putting (3p+5)=0
3p+5=0
3p= -5
p= -5/3
Answer:
[tex]p = \frac{-5}{3} or (-1)[/tex]
Step-by-step explanation:
[tex]3p^{2} + 8p + 5 = 0\\\\ => 3p^{2} + 5p + 3p + 5 = 0\\\\=> p(3p + 5) + 1(3p + 5) = 0\\\\=>(3p + 5)(p + 1) = 0\\\\=> 3p + 5 = 0 \\or \\=> p + 1 = 0\\\\Therefore, p = \frac{-5}{3} or (-1).[/tex]