1. Calculate the amount and compound interest on 18,000 for 1(½) years at 10% per
annum compounded half yearly.​

1. Calculate the amount and compound interest on 18,000 for 1(½) years at 10% per
annum compounded half yearly.​

2 thoughts on “1. Calculate the amount and compound interest on 18,000 for 1(½) years at 10% per<br />annum compounded half yearly.​”

  1. Given :-

    • Principal = ₹18000
    • Time = 1½ years → 3/2 years
    • Rate = 10%
    • Compounded half-yearly

    Aim :-

    • To find the amount and compound interest

    Formula to use :-

    [tex] \longrightarrow \sf{amount = principal \bigg(1 + \dfrac{rate}{200} \bigg) ^{2 \times time}} [/tex]

    [tex] \longrightarrow \sf{compound \: interest = (amount) – (principal)}[/tex]

    Substituting the values,

    Amount :-

    [tex] \implies \sf{amount = 18000 \bigg( 1 + \dfrac{10}{200} \bigg)^{2 \times \frac{3}{2} } }[/tex]

    [tex] \implies \sf{amount = 18000 \bigg(1 + \dfrac{1 \not0}{20 \not0} \bigg)^{ \not2 \times \frac{3}{ \not2} } }[/tex]

    [tex] \implies \sf{amount = 18000 \bigg( \dfrac{20 + 1}{20} \bigg)^{3} }[/tex]

    [tex] \implies \sf{amount = 18000 \bigg( \dfrac{21}{20} \bigg)^{3} }[/tex]

    [tex] \implies \sf{amount = 18000 \times \dfrac{21}{20} \times \dfrac{21}{20} \times \dfrac{21}{20} }[/tex]

    [tex] \implies \sf{amount = 18 \not0 \not0 \not0 \times \dfrac{21}{2 \not0} \times \dfrac{21}{2 \not0} \times \dfrac{21}{2 \not0} }[/tex]

    Cancelling 18 and 2, as they are divisible,

    [tex] \implies \sf{amount = 9 \times 21 \times \dfrac{21}{2} \times \dfrac{21}{2} }[/tex]

    [tex] \implies \sf{ amount = \dfrac{83349}{4}}[/tex]

    [tex] \implies \sf{amount = 20837.25}[/tex]

    Amount = ₹20837.25

    Compound interest :-

    Substituting the values,

    [tex] \implies \sf{20837.25 – 18000}[/tex]

    [tex] \implies \sf{2837.25}[/tex]

    Compound interest = ₹2837.25

    Some more formulas :-

    • When interest is compounded yearly :-

    [tex] \longrightarrow \sf{amount = principal \bigg(1 + \dfrac{rate}{100} \bigg) ^{time} }[/tex]

    • When interest is compounded quarterly :-

    [tex] \longrightarrow \sf{amount = principal \bigg(1 + \dfrac{rate}{400} \bigg)^{4 \times time} }[/tex]

    • Simple interest :-

    [tex] \longrightarrow \sf{simple \: interest = \dfrac{principal \times rate \times time}{100} }[/tex]

  2. Answer:

    Principal = 18000

    Time = 3/2 years

    Rate = 10℅

    A = P(1+r/200)²*³/²

    = 18000(210/200)³

    = 18000*(9261/8000)

    = (166698/8000)

    Amount = 20837.25

    COMPOUND INTEREST = AMOUNT-PRINCIPAL

    = (20837.25-18000)

    = 2837.25

    HOPE IT HELPS YOU BRO.

Leave a Comment