1. Calculate the amount and compound interest on 18,000 for 1(½) years at 10% perannum compounded half yearly. About the author Lyla
Given :- Principal = ₹18000 Time = 1½ years → 3/2 years Rate = 10% Compounded half-yearly Aim :- To find the amount and compound interest Formula to use :- [tex] \longrightarrow \sf{amount = principal \bigg(1 + \dfrac{rate}{200} \bigg) ^{2 \times time}} [/tex] [tex] \longrightarrow \sf{compound \: interest = (amount) – (principal)}[/tex] Substituting the values, Amount :- [tex] \implies \sf{amount = 18000 \bigg( 1 + \dfrac{10}{200} \bigg)^{2 \times \frac{3}{2} } }[/tex] [tex] \implies \sf{amount = 18000 \bigg(1 + \dfrac{1 \not0}{20 \not0} \bigg)^{ \not2 \times \frac{3}{ \not2} } }[/tex] [tex] \implies \sf{amount = 18000 \bigg( \dfrac{20 + 1}{20} \bigg)^{3} }[/tex] [tex] \implies \sf{amount = 18000 \bigg( \dfrac{21}{20} \bigg)^{3} }[/tex] [tex] \implies \sf{amount = 18000 \times \dfrac{21}{20} \times \dfrac{21}{20} \times \dfrac{21}{20} }[/tex] [tex] \implies \sf{amount = 18 \not0 \not0 \not0 \times \dfrac{21}{2 \not0} \times \dfrac{21}{2 \not0} \times \dfrac{21}{2 \not0} }[/tex] Cancelling 18 and 2, as they are divisible, [tex] \implies \sf{amount = 9 \times 21 \times \dfrac{21}{2} \times \dfrac{21}{2} }[/tex] [tex] \implies \sf{ amount = \dfrac{83349}{4}}[/tex] [tex] \implies \sf{amount = 20837.25}[/tex] Amount = ₹20837.25 Compound interest :- Substituting the values, [tex] \implies \sf{20837.25 – 18000}[/tex] [tex] \implies \sf{2837.25}[/tex] Compound interest = ₹2837.25 Some more formulas :- When interest is compounded yearly :- [tex] \longrightarrow \sf{amount = principal \bigg(1 + \dfrac{rate}{100} \bigg) ^{time} }[/tex] When interest is compounded quarterly :- [tex] \longrightarrow \sf{amount = principal \bigg(1 + \dfrac{rate}{400} \bigg)^{4 \times time} }[/tex] Simple interest :- [tex] \longrightarrow \sf{simple \: interest = \dfrac{principal \times rate \times time}{100} }[/tex] Reply
Answer: Principal = 18000 Time = 3/2 years Rate = 10℅ A = P(1+r/200)²*³/² = 18000(210/200)³ = 18000*(9261/8000) = (166698/8000) Amount = 20837.25 COMPOUND INTEREST = AMOUNT-PRINCIPAL = (20837.25-18000) = 2837.25 HOPE IT HELPS YOU BRO. Reply
Given :-
Aim :-
Formula to use :-
[tex] \longrightarrow \sf{amount = principal \bigg(1 + \dfrac{rate}{200} \bigg) ^{2 \times time}} [/tex]
[tex] \longrightarrow \sf{compound \: interest = (amount) – (principal)}[/tex]
Substituting the values,
Amount :-
[tex] \implies \sf{amount = 18000 \bigg( 1 + \dfrac{10}{200} \bigg)^{2 \times \frac{3}{2} } }[/tex]
[tex] \implies \sf{amount = 18000 \bigg(1 + \dfrac{1 \not0}{20 \not0} \bigg)^{ \not2 \times \frac{3}{ \not2} } }[/tex]
[tex] \implies \sf{amount = 18000 \bigg( \dfrac{20 + 1}{20} \bigg)^{3} }[/tex]
[tex] \implies \sf{amount = 18000 \bigg( \dfrac{21}{20} \bigg)^{3} }[/tex]
[tex] \implies \sf{amount = 18000 \times \dfrac{21}{20} \times \dfrac{21}{20} \times \dfrac{21}{20} }[/tex]
[tex] \implies \sf{amount = 18 \not0 \not0 \not0 \times \dfrac{21}{2 \not0} \times \dfrac{21}{2 \not0} \times \dfrac{21}{2 \not0} }[/tex]
Cancelling 18 and 2, as they are divisible,
[tex] \implies \sf{amount = 9 \times 21 \times \dfrac{21}{2} \times \dfrac{21}{2} }[/tex]
[tex] \implies \sf{ amount = \dfrac{83349}{4}}[/tex]
[tex] \implies \sf{amount = 20837.25}[/tex]
Amount = ₹20837.25
Compound interest :-
Substituting the values,
[tex] \implies \sf{20837.25 – 18000}[/tex]
[tex] \implies \sf{2837.25}[/tex]
Compound interest = ₹2837.25
Some more formulas :-
[tex] \longrightarrow \sf{amount = principal \bigg(1 + \dfrac{rate}{100} \bigg) ^{time} }[/tex]
[tex] \longrightarrow \sf{amount = principal \bigg(1 + \dfrac{rate}{400} \bigg)^{4 \times time} }[/tex]
[tex] \longrightarrow \sf{simple \: interest = \dfrac{principal \times rate \times time}{100} }[/tex]
Answer:
Principal = 18000
Time = 3/2 years
Rate = 10℅
A = P(1+r/200)²*³/²
= 18000(210/200)³
= 18000*(9261/8000)
= (166698/8000)
Amount = 20837.25
COMPOUND INTEREST = AMOUNT-PRINCIPAL
= (20837.25-18000)
= 2837.25
HOPE IT HELPS YOU BRO.