What sum will amount to ₹6555 after 3 years at 10% per annum, compounded annually. About the author Valentina
Given : Amount = Rs . 6555 , Rate of Interest = 10 % & Time = 3 yrs . Need To Find : The Principal. ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ ⠀⠀⠀⠀Formula for Finding Amount is given by : [tex]\dag\:\:\boxed{ \sf{ Amount = \bigg[ P \bigg( 1 + \dfrac {R}{100} \bigg) ^T \bigg] }}\\\\[/tex] Where, P is the Principal , R is the Rate of Interest & T is the Time & given Amount is Rs.6555 . ⠀⠀⠀⠀⠀⠀[tex]\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\[/tex] [tex]\qquad \:\::\implies \sf{ 6555 = \bigg[ P \bigg( 1 + \dfrac {10}{100} \bigg) ^3 \bigg] }\\\\[/tex] [tex]\qquad \:\::\implies \sf{ 6555 = \bigg[ P \bigg( 1 + \dfrac {1\cancel{0}}{10\cancel{0}} \bigg) ^3 \bigg] }\\\\[/tex] [tex]\qquad \:\::\implies \sf{ 6555 = \bigg[ P \bigg( 1 + \dfrac {1}{10} \bigg) ^3 \bigg] }\\\\[/tex] [tex]\qquad \:\::\implies \sf{ 6555 = \bigg[ P \bigg( \dfrac {11}{10} \bigg) ^3 \bigg] }\\\\[/tex] [tex]\qquad \:\::\implies \sf{ 6555 = \bigg[ P \bigg( \dfrac {1331}{1000} \bigg) \bigg] }\\\\[/tex] [tex]\qquad \:\::\implies \sf{ \bigg( \dfrac {10000\times 6555}{1331} \bigg) = P }\\\\[/tex] [tex]\qquad \:\::\implies \sf{ P = Rs. 49248.6 }\\\\[/tex] Therefore, Hence , Rs. 49248.6 will amount to Rs. 6555 in 3 years at a compound interest at the rate are 10% per annum . ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ Reply
Given : Amount = Rs . 6555 , Rate of Interest = 10 % & Time = 3 yrs .
Need To Find : The Principal.
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
⠀⠀⠀⠀Formula for Finding Amount is given by :
[tex]\dag\:\:\boxed{ \sf{ Amount = \bigg[ P \bigg( 1 + \dfrac {R}{100} \bigg) ^T \bigg] }}\\\\[/tex]
Where,
⠀⠀⠀⠀⠀⠀[tex]\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\[/tex]
[tex]\qquad \:\::\implies \sf{ 6555 = \bigg[ P \bigg( 1 + \dfrac {10}{100} \bigg) ^3 \bigg] }\\\\[/tex]
[tex]\qquad \:\::\implies \sf{ 6555 = \bigg[ P \bigg( 1 + \dfrac {1\cancel{0}}{10\cancel{0}} \bigg) ^3 \bigg] }\\\\[/tex]
[tex]\qquad \:\::\implies \sf{ 6555 = \bigg[ P \bigg( 1 + \dfrac {1}{10} \bigg) ^3 \bigg] }\\\\[/tex]
[tex]\qquad \:\::\implies \sf{ 6555 = \bigg[ P \bigg( \dfrac {11}{10} \bigg) ^3 \bigg] }\\\\[/tex]
[tex]\qquad \:\::\implies \sf{ 6555 = \bigg[ P \bigg( \dfrac {1331}{1000} \bigg) \bigg] }\\\\[/tex]
[tex]\qquad \:\::\implies \sf{ \bigg( \dfrac {10000\times 6555}{1331} \bigg) = P }\\\\[/tex]
[tex]\qquad \:\::\implies \sf{ P = Rs. 49248.6 }\\\\[/tex]
Therefore,
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀