What should be the value of p, for the given equations to have infinitely manysolutions?5x + py = 4 and 15 x + 3y = 12 About the author Ella
[tex]\large\underline{\sf{Given- }}[/tex] Two lines, 5x + py = 4 and 15x + 3y = 12 have infinitely many solutions. [tex]\large\underline{\sf{To\:Find – }}[/tex] Value of ‘p’ for which lines have infinitely many solutions. Understanding the concept :- [tex]\sf \: Let \: consider \: lines \: a_1x + b_1y + c_1 = 0 \: and \: a_2x + b_2y + c_2 = 0[/tex] then, two lines have infinitely many solutions iff [tex]\rm :\longmapsto\:\bf \:\dfrac{a_1}{a_2} = \dfrac{b_1}{b_2} = \dfrac{c_1}{c_2}[/tex] [tex]\large\underline{\sf{Solution-}}[/tex] Given that, Two lines, 5x + py = 4 and 15x + 3y = 12 have infinitely many solutions. Now, We know that, Two lines have infinitely many solutions iff [tex]\rm :\longmapsto\: \:\dfrac{a_1}{a_2} = \dfrac{b_1}{b_2} = \dfrac{c_1}{c_2}[/tex] Here, • a₁ = 5 • a₂ = 15 • b₁ = p • b₂ = 3 • c₁ = 4 • c₂ = 12 Now, On substituting the values, we get [tex]\rm :\longmapsto\:\dfrac{5}{15} = \dfrac{p}{3} = \dfrac{4}{12} [/tex] [tex]\rm :\longmapsto\:\dfrac{1}{3} = \dfrac{p}{3} = \dfrac{1}{3} [/tex] [tex]\bf\implies \:p \: = \: 1[/tex] Additional Information :- [tex]\sf \: Let \: consider \: lines \: a_1x + b_1y + c_1 = 0 \: and \: a_2x + b_2y + c_2 = 0[/tex] then (1). System of equations have unique solution iff [tex]\rm :\longmapsto\:\bf \:\dfrac{a_1}{a_2} \ne \dfrac{b_1}{b_2}[/tex] (2). System of equations have no solutions iff [tex]\rm :\longmapsto\:\bf \:\dfrac{a_1}{a_2} = \dfrac{b_1}{b_2} \ne \dfrac{c_1}{c_2}[/tex] Reply
Answer: The equations (p−3)x+3y−p=0 px+py−12=0 For infinite many solution a 2 a 1 = b 2 b 1 = c 2 c 1 Here a 1 =p−3,b 1 =3,c 1 −p a 2 =p,b 2 =p,c 2 =−12 p p−3 = p 3 = −12 −1 Solving p 3 = −12 −1 ⟹p 2 =36⟹p=±6 Now solving p p−3 = −12 −1 ⟹p−3=3⟹p=6 Hence the value of p=6. Reply
[tex]\large\underline{\sf{Given- }}[/tex]
Two lines,
[tex]\large\underline{\sf{To\:Find – }}[/tex]
Understanding the concept :-
[tex]\sf \: Let \: consider \: lines \: a_1x + b_1y + c_1 = 0 \: and \: a_2x + b_2y + c_2 = 0[/tex]
then,
[tex]\rm :\longmapsto\:\bf \:\dfrac{a_1}{a_2} = \dfrac{b_1}{b_2} = \dfrac{c_1}{c_2}[/tex]
[tex]\large\underline{\sf{Solution-}}[/tex]
Given that,
Two lines,
Now,
We know that,
[tex]\rm :\longmapsto\: \:\dfrac{a_1}{a_2} = \dfrac{b_1}{b_2} = \dfrac{c_1}{c_2}[/tex]
Here,
Now,
On substituting the values, we get
[tex]\rm :\longmapsto\:\dfrac{5}{15} = \dfrac{p}{3} = \dfrac{4}{12} [/tex]
[tex]\rm :\longmapsto\:\dfrac{1}{3} = \dfrac{p}{3} = \dfrac{1}{3} [/tex]
[tex]\bf\implies \:p \: = \: 1[/tex]
Additional Information :-
[tex]\sf \: Let \: consider \: lines \: a_1x + b_1y + c_1 = 0 \: and \: a_2x + b_2y + c_2 = 0[/tex]
then
(1). System of equations have unique solution iff
[tex]\rm :\longmapsto\:\bf \:\dfrac{a_1}{a_2} \ne \dfrac{b_1}{b_2}[/tex]
(2). System of equations have no solutions iff
[tex]\rm :\longmapsto\:\bf \:\dfrac{a_1}{a_2} = \dfrac{b_1}{b_2} \ne \dfrac{c_1}{c_2}[/tex]
Answer:
The equations (p−3)x+3y−p=0
px+py−12=0
For infinite many solution
a
2
a
1
=
b
2
b
1
=
c
2
c
1
Here a
1
=p−3,b
1
=3,c
1
−p
a
2
=p,b
2
=p,c
2
=−12
p
p−3
=
p
3
=
−12
−1
Solving
p
3
=
−12
−1
⟹p
2
=36⟹p=±6
Now solving
p
p−3
=
−12
−1
⟹p−3=3⟹p=6
Hence the value of p=6.