what is the quadratic polynomial whose sum and the product of zeroes is root2, 1/2 respectively​

By Mary

what is the quadratic polynomial whose sum and the product of zeroes is root2, 1/2 respectively​

About the author
Mary

2 thoughts on “what is the quadratic polynomial whose sum and the product of zeroes is root2, 1/2 respectively​”

  1. Answer:

    FINDING POLYNOMIAL USING FORMULA-x²-(sum of zeroes)x+product of zeroes

    =x²-root2x+1/2

    =2x²-root2x+1. (takin 2 out of bracket)

    Step-by-step explanation:

    polynomial is 2x²-root2x+1

    HOPE THIS WILL HELP YOU!

    Reply
  2. GIVEN :

    • [tex] \alpha + \beta = \sqrt{2} [/tex] and [tex]\alpha \beta = \dfrac{1}{2}[/tex] .

    TO FIND :

    • Quadratic Polynomial.

    FORMULA REQUIRED :

    • [tex]\underline{\boxed{\purple{\bf{x^2- \left(\alpha + \beta\right)x + \alpha\beta =0 }}}} [/tex]

    SOLUTION :

    We have,

    • By substituting the values, [tex] \alpha + \beta = \sqrt{2} [/tex] and [tex]\alpha \beta = \dfrac{1}{2}[/tex] :

    [tex]:\implies {\sf x^2 – \left(\alpha + \beta \right)x + \alpha \beta = 0}\\ \\ [/tex]

    [tex]:\implies {\sf x^2- (\sqrt{2} )x+\dfrac{1}{2} =0 }\\ \\ [/tex]

    [tex]:\implies {\sf x^2- \sqrt{2} x+\dfrac{1}{2 } =0 }\\ \\ [/tex]

    [tex]:\implies {\sf \dfrac{2 x^2 – 2\sqrt{2} x + 1}{2} =0 }\\ \\ [/tex]

    • By cross multiplication :

    [tex]:\implies {\sf 2 x^2 – 2\sqrt{2} x + 1 = 0 \times 2} \\ \\ [/tex]

    [tex]:\implies{ \underline{ \boxed{ \blue{\bf{ 2 x^2 – 2\sqrt{2} x + 1 = 0}}}}}[/tex]

    [tex]\huge{\green{\therefore}}[/tex] Quadratic Polynomial = [tex]\bf{ 2 x^2 – 2\sqrt{2} x + 1 }[/tex].

    Reply

Leave a Comment