What Is Side Of A Rhombus whose diagonals are 24cm and 10cm

NO SPAM….​

What Is Side Of A Rhombus whose diagonals are 24cm and 10cm

NO SPAM….​

About the author
Harper

1 thought on “What Is Side Of A Rhombus whose diagonals are 24cm and 10cm <br /><br />NO SPAM….​”

  1. ❍ Let’s Consider [tex]\bf{D_{1} \:and\:D_{2}} [/tex] be two diagonals of Rhombus.

    ⠀⠀⠀⠀⠀ The Formula for Side of Rhombus is given by :

    [tex]\dag\frak{\underline { As,\:We\:know\:that\::}}\\[/tex]

    [tex]\star\boxed{\pink{\sf{ \: Side_{(Rhombus)} = \sqrt { \bigg(\dfrac{D_{1}\:}{2}\bigg)^{2} + \bigg(\dfrac{D_{2}\:}{2}\bigg)^{2} }}}}\\[/tex]

    Where,

    • [tex]D_{1} \:and\:D_{2} [/tex] are two diagonals of Rhombus

    ⠀⠀⠀⠀⠀⠀[tex]\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\[/tex]

    [tex]\qquad:\implies \tt {Side_{(Rhombus)} = \sqrt { \bigg(\dfrac{24\:}{2}\bigg)^{2} + \bigg(\dfrac{10\:}{2}\bigg)^{2} } }\\[/tex]

    [tex]\qquad:\implies \tt {Side_{(Rhombus)} = \sqrt { \bigg(\cancel{\dfrac{24\:}{2}}\bigg)^{2} + \bigg(\cancel {\dfrac{10\:}{2}}\bigg)^{2} }}\\[/tex]

    [tex]\qquad:\implies \tt {Side_{(Rhombus)} = \sqrt { \bigg(12\bigg)^{2} + \bigg( 5\bigg)^{2} } }\\[/tex]

    [tex]\qquad:\implies \tt {Side_{(Rhombus)} = \sqrt { 144 + 25 } }\\[/tex]

    [tex]\qquad:\implies \tt {Side_{(Rhombus)} = \sqrt { 169 }}\\[/tex]

    ⠀⠀⠀⠀⠀[tex]\underline {\boxed{\purple{ \mathrm { Side_{(Rhombus)}= 13\: cm}}}}\:\bf{\bigstar}\\[/tex]

    Therefore,

    ⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \mathrm { Side \:of\:Rhombus \:is\:\bf{13\: cm}}}}\\[/tex]

    ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

    [tex]\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\[/tex]

    ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀[tex]\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}[/tex]

    ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

    Reply

Leave a Comment