Verity that points P(-2, 2), Q(2, 2) and R(2.7) are vertices of a right angledtriangle. About the author Amelia
Step-by-step explanation: PQ= √(x2-x1)²+(y2-y1)² PQ=√(2+2)²+(2-2)² PQ=√(4)²+0² PQ=√16 PQ=4 QR=√(x3-x2)²+(y3-y2)² QR=√(2-2)²+(7-2)² QR=√0²+5² QR=√25 QR=5 PR=√(x3-x1)²+(y3-y1)² PR=√(2+2)²+(7-2)² PR=√4²+5² PR=√9² PR=√81 PR=9 .°. PR²=PQ²+QR² .°. PR²=4²+5² .°. PR²=9² °.° PR =9 .°. it’s is proved the the points are vertices of a right angle triangle. Reply
Step-by-step explanation:
PQ= √(x2-x1)²+(y2-y1)²
PQ=√(2+2)²+(2-2)²
PQ=√(4)²+0²
PQ=√16
PQ=4
QR=√(x3-x2)²+(y3-y2)²
QR=√(2-2)²+(7-2)²
QR=√0²+5²
QR=√25
QR=5
PR=√(x3-x1)²+(y3-y1)²
PR=√(2+2)²+(7-2)²
PR=√4²+5²
PR=√9²
PR=√81
PR=9
.°. PR²=PQ²+QR²
.°. PR²=4²+5²
.°. PR²=9²
°.° PR =9
.°. it’s is proved the the points are vertices of a right angle triangle.