Verify the property ax(b+c)=(axb)+(axc) by taking: 1) a (1/3), b =0, c = (-7/6) 2)

Verify the property ax(b+c)=(axb)+(axc) by taking: 1) a (1/3), b =0, c = (-7/6) 2)

About the author
Autumn

1 thought on “Verify the property ax(b+c)=(axb)+(axc) by taking: 1) a (1/3), b =0, c = (-7/6) 2) <br />​”

  1. Step-by-step explanation:

    a(b+c)=ab+ac

    this is the distributive property

    given

    a=-10

    b=-9

    c=8

    So L.H.S.

    = a(b+c)= -10*(-9+8)=-10*(-1)=10

    => L.H.S =10•••••••••(i)

    again R.HS.

    = ab+ac = (-10)*(-9)+(-10)*8

    =90–80 =10

    => R.HS. =10••••••••••(ii)

    from (i)&(ii)

    L.H.S=R.H.S=10

    hence shown that the distributive property is true for the given numbers.

    a(b+c)=(axb)+(axc)

    L.H.S=a(b+c)

    =-10(-9+8)

    =(-10)x(-1)

    =10

    R.H.S=(axb)+(axc)

    =(-10×-9)+(-10×8)

    =90–80

    =10

    Hence proof

    L.H.S=R H S

    Reply

Leave a Comment