Verify the property ax(b+c)=(axb)+(axc) by taking: 1) a (1/3), b =0, c = (-7/6) 2) About the author Autumn
Step-by-step explanation: a(b+c)=ab+ac this is the distributive property given a=-10 b=-9 c=8 So L.H.S. = a(b+c)= -10*(-9+8)=-10*(-1)=10 => L.H.S =10•••••••••(i) again R.HS. = ab+ac = (-10)*(-9)+(-10)*8 =90–80 =10 => R.HS. =10••••••••••(ii) from (i)&(ii) L.H.S=R.H.S=10 hence shown that the distributive property is true for the given numbers. a(b+c)=(axb)+(axc) L.H.S=a(b+c) =-10(-9+8) =(-10)x(-1) =10 R.H.S=(axb)+(axc) =(-10×-9)+(-10×8) =90–80 =10 Hence proof L.H.S=R H S Reply
Step-by-step explanation:
a(b+c)=ab+ac
this is the distributive property
given
a=-10
b=-9
c=8
So L.H.S.
= a(b+c)= -10*(-9+8)=-10*(-1)=10
=> L.H.S =10•••••••••(i)
again R.HS.
= ab+ac = (-10)*(-9)+(-10)*8
=90–80 =10
=> R.HS. =10••••••••••(ii)
from (i)&(ii)
L.H.S=R.H.S=10
hence shown that the distributive property is true for the given numbers.
a(b+c)=(axb)+(axc)
L.H.S=a(b+c)
=-10(-9+8)
=(-10)x(-1)
=10
R.H.S=(axb)+(axc)
=(-10×-9)+(-10×8)
=90–80
=10
Hence proof
L.H.S=R H S