Verify the identity {a}^{3} – {b}^{3} = ( a – b)( {a}^{2} + ab \: + {b}^{2} )a3−b3=(a−b)(a2+ab+b2) Please answer in steps please About the author Iris
Answer: [tex]{a}^{3} – {b}^{3} = ( a – b)( {a}^{2} + ab \: + {b}^{2} ) \\ = ( {a}^{3} + {a}^{2}b + ab {}^{2} – {a}^{2}b – ab {}^{2} – {b}^{3} ) \\ = {a}^{3} – {b}^{3} \\ \sf \: hence \: proved[/tex] Reply
Answer:
[tex]{a}^{3} – {b}^{3} = ( a – b)( {a}^{2} + ab \: + {b}^{2} ) \\ = ( {a}^{3} + {a}^{2}b + ab {}^{2} – {a}^{2}b – ab {}^{2} – {b}^{3} ) \\ = {a}^{3} – {b}^{3} \\ \sf \: hence \: proved[/tex]
[tex]{ \red{ \fbox{mark upper one Brainliest .-.}}}[/tex]