Verify identity

a3
+b3
=(a+b)(a2
-ab+b2
)


Please answer in LHS = RHS format​

Verify identity

a3
+b3
=(a+b)(a2
-ab+b2
)

Please answer in LHS = RHS format​

About the author
Adalyn

1 thought on “Verify identity<br /><br />a3<br /> +b3<br /> =(a+b)(a2<br /> -ab+b2<br /> )<br /><br /><br />Please answer in LHS = RHS format​”

  1. Question :-

    To verify the identity a³+b³ = (a+b)(a² – ab + b²)

    Answer :-

    In order to verify the identity let

    • a = 4
    • b = 1

    By substituting the values,

    ⇒4³ +1³ = (4+1)[4² – (4)(1) + 1²]

    Solving LHS (left hand side of the equation) and RHS (Right hand side of the equation) separately,

    LHS :-

    4³ + 1³

    ⇒ 64 + 1

    ⇒ 65

    RHS :-

    (4+1)[4² – (4)(1) + 1²]

    ⇒ (5)[16 – 4 + 1]

    ⇒ (5)(13)

    ⇒ 65

    LHS = RHS

    Therefore verified

    Some more formulas :-

    • (a+b)² = a² + 2ab + b²
    • (a-b)² = a² – 2ab + b²
    • (a+b+c)² = a² + b² + c² + 2ab + 2bc + 2ca
    • (x+a)(x+b) = x² + x(a+b) + ab
    • a²-b² = (a+b)(a-b)
    • (a+b)³ = a³ + 3a²b + 3ab² + b³
    • (a-b)³ = a³ – 3a²b + 3ab² – b³
    • a³+b³ = (a+b)(a² – ab + b²)
    • a³-b³ = (a-b)(a² + ab + b²)
    • a³+b³+c³ – 3abc = (a+b+c)(a² + b² + c² – ab – bc – ca)

    Reply

Leave a Comment