We have to verify distributive property of rationalnumbershere. According to the distributive property of the rational numbers, If a,b,c are rational numbers then :
⇒ a ( b + c ) = a(b) + a(c)
Firstly we’ll simplify the L.H.S and then we’ll simplify the R.H.S.
Answer:
The statement is true
Step-by-step explanation:
9 x (4 + (- 2) = (9 x 4) + (9 x (- 2)
First, follow BODMAS rules
9 x (4 + (- 2) = (9 x 4) + (9 x (- 2)
9 x 2 = 36 – 18
18 = 18
[tex]\underline{ \underline{ \Large \pmb{\sf { {Appropriate \: Question :}} }} } [/tex]
Verify 9 × {4 +(-2) } = (9 × 4) + { 9 × (-2) }
[tex]\underline{ \underline{ \Large \pmb{\sf { {Required \: Answer :}} }} } [/tex]
We have to verify distributive property of rational numbers here. According to the distributive property of the rational numbers, If a,b,c are rational numbers then :
⇒ a ( b + c ) = a(b) + a(c)
Firstly we’ll simplify the L.H.S and then we’ll simplify the R.H.S.
L.H.S :
[tex] \longrightarrow \sf { 9 × \{ 4 +(-2) \} } [/tex]
[tex] \longrightarrow \sf { 9 × (4 – 2) } [/tex]
[tex] \longrightarrow \sf { 9 × (2) } [/tex]
[tex] \longrightarrow \boxed{\pmb{ \rm \red { 18 }}} [/tex]
R.H.S :
[tex] \longrightarrow \sf { (9 × 4) + \{9 × (-2) \} } [/tex]
[tex] \longrightarrow \sf { 36 + (-18) } [/tex]
[tex] \longrightarrow \sf { 36 -18 } [/tex]
[tex] \longrightarrow \boxed{\pmb{ \rm \red { 18 }}} [/tex]
In the conclusion we get that,
[tex] \longrightarrow \boxed{\pmb{ \rm \green { L.H.S = R.H.S }}} [/tex]
Hence, verified!