⭐Question:– Using binomial theorem, prove that [tex] Using \: binomial \: theorem, \: prove \: that\: \\ 3 {}^{2n + 2 \: } – \: 8x \: – \: 9 \: is \: divisble \: by \: 64.[/tex] ⭐Answer:– Solution:- Let p (x) = [tex]3 {}^{2n + 2} \: – 8x \: – \: 9 \: is \: divisble \: by \: 64 \\ [/tex] [tex]when \: put \: n \: = \: 1 \\ [/tex] [tex]p \: (1) = \: 3 {}^{4} \: – 8 \: – 9 = \: 64[/tex] Let n = k and we get, [tex]p \: (k) \: = \: 3 {}^{2k + 2} \: – \: 8k \: – 9 \: divisble \: by \: 64[/tex] [tex]3 {}^{2k + 2} \: – 8k \: – 9 \: = \: 64m \: \: \: \: when \: m \: =N\\ [/tex] [tex]now \: we \: shall \: prove \: that \: p {}^{k + 1} is \: also \: true[/tex] [tex]p \: (k + 1) \: = \: 3 {}^{2(k + 1) + 2} \: – 8(k + 1) – 9 \: is \\ divisble \: by \: 64[/tex] Now, [tex]p(k + 1) = \: 3 {}^{2(k + 1) + 2} – 8(k + 1) \: – 9 = 3 {}^{2} .3 {}^{2k + 2} – 8k \: – 17[/tex] [tex] = \: 9.3 {}^{2k + 2} – 8k – 17[/tex] [tex] = \: 9(64m + 8k + 9) \: – 8k \: – 17[/tex] [tex] = 9.64m \: 72k + 81 – 8k – 17[/tex] [tex] = 9.64m + 64k + 64[/tex] [tex] = 64(9m + k + 1)[/tex] which is disability by 64. Thus, p (k+1) is true whenever p(k) is true. Hence, by principle mathematical induction, px is true for all natural number. Reply
⭐Question:–
Using binomial theorem, prove that
[tex] Using \: binomial \: theorem, \: prove \: that\: \\ 3 {}^{2n + 2 \: } – \: 8x \: – \: 9 \: is \: divisble \: by \: 64.[/tex]
⭐Answer:–
Solution:-
Let p (x) =
[tex]3 {}^{2n + 2} \: – 8x \: – \: 9 \: is \: divisble \: by \: 64 \\ [/tex]
[tex]when \: put \: n \: = \: 1 \\ [/tex]
[tex]p \: (1) = \: 3 {}^{4} \: – 8 \: – 9 = \: 64[/tex]
Let n = k and we get,
[tex]p \: (k) \: = \: 3 {}^{2k + 2} \: – \: 8k \: – 9 \: divisble \: by \: 64[/tex]
[tex]3 {}^{2k + 2} \: – 8k \: – 9 \: = \: 64m \: \: \: \: when \: m \: =N\\ [/tex]
[tex]now \: we \: shall \: prove \: that \: p {}^{k + 1} is \: also \: true[/tex]
[tex]p \: (k + 1) \: = \: 3 {}^{2(k + 1) + 2} \: – 8(k + 1) – 9 \: is \\ divisble \: by \: 64[/tex]
Now,
[tex]p(k + 1) = \: 3 {}^{2(k + 1) + 2} – 8(k + 1) \: – 9 = 3 {}^{2} .3 {}^{2k + 2} – 8k \: – 17[/tex]
[tex] = \: 9.3 {}^{2k + 2} – 8k – 17[/tex]
[tex] = \: 9(64m + 8k + 9) \: – 8k \: – 17[/tex]
[tex] = 9.64m \: 72k + 81 – 8k – 17[/tex]
[tex] = 9.64m + 64k + 64[/tex]
[tex] = 64(9m + k + 1)[/tex] which is disability by 64.
Thus, p (k+1) is true whenever p(k) is true.
Hence, by principle mathematical induction,
px is true for all natural number.