uf each box had 24 bottles of juice find total number of bottles brought by rakhesh About the author Evelyn
Answer: Given: Two cans contain 60 litres and 135 litres of milk respectively. \begin{gathered} \\ {\bf{To\: Find\::}} \\ \end{gathered} ToFind: The maximum capacity of a can which can measure the milk of each can when used an exact number of times. \begin{gathered} \\ {\bf{Solution\::}} \\ \end{gathered} Solution: ☛ To calculate maximum capacity of a can that measures the milk in exact number of times, we need to find H.C.F of 60 & 135. ⠀⠀⠀ \red\star⋆ H.C.F of 60 & 135 \red\star⋆ \begin{gathered}{\begin{array}{r | l} 2 & 60 \\ \cline{2-2} 2 & 30 \\ \cline{2-2} 3 & 15 \\ \cline{2-2} & 5 \end{array}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: {\begin{array}{r | l} 3 & 135 \\ \cline{2-2} 3 & 45 \\ \cline{2-2} 3 & 15 \\ \cline{2-2} & 5 \end{array}} \end{gathered} 2 \cline2−22 \cline2−23 \cline2−2 60 30 15 5 3 \cline2−23 \cline2−23 \cline2−2 135 45 15 5 ➠ 60 = 2 × 2 × 3 × 5 ➠ 135 = 3 × 3 × 3 × 5 ✯ H.C.F of 60 & 135 = 3 × 5 = 15 Hence, \begin{gathered}\dashrightarrow\:\:\bf{Max^m~ capacity~ of~ the~ can~ =~ H.C.F ~of ~60~ \& ~135~} \\ \end{gathered} ⇢Max m capacity of the can = H.C.F of 60 & 135 \begin{gathered}\dashrightarrow\:\:\bf\pink{Max^m~ capacity~ of~ the~ can~ =~ 15~L} \\ \end{gathered} ⇢Max m capacity of the can = 15 L ∴ The maximum capacity of the can is 15 L mark me as brainliest ok Reply
Answer:
Given:
Two cans contain 60 litres and 135 litres of milk respectively.
\begin{gathered} \\ {\bf{To\: Find\::}} \\ \end{gathered}
ToFind:
The maximum capacity of a can which can measure the milk of each can when used an exact number of times.
\begin{gathered} \\ {\bf{Solution\::}} \\ \end{gathered}
Solution:
☛ To calculate maximum capacity of a can that measures the milk in exact number of times, we need to find H.C.F of 60 & 135.
⠀⠀⠀ \red\star⋆ H.C.F of 60 & 135 \red\star⋆
\begin{gathered}{\begin{array}{r | l} 2 & 60 \\ \cline{2-2} 2 & 30 \\ \cline{2-2} 3 & 15 \\ \cline{2-2} & 5 \end{array}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: {\begin{array}{r | l} 3 & 135 \\ \cline{2-2} 3 & 45 \\ \cline{2-2} 3 & 15 \\ \cline{2-2} & 5 \end{array}} \end{gathered}
2
\cline2−22
\cline2−23
\cline2−2
60
30
15
5
3
\cline2−23
\cline2−23
\cline2−2
135
45
15
5
➠ 60 = 2 × 2 × 3 × 5
➠ 135 = 3 × 3 × 3 × 5
✯ H.C.F of 60 & 135 = 3 × 5 = 15
Hence,
\begin{gathered}\dashrightarrow\:\:\bf{Max^m~ capacity~ of~ the~ can~ =~ H.C.F ~of ~60~ \& ~135~} \\ \end{gathered}
⇢Max
m
capacity of the can = H.C.F of 60 & 135
\begin{gathered}\dashrightarrow\:\:\bf\pink{Max^m~ capacity~ of~ the~ can~ =~ 15~L} \\ \end{gathered}
⇢Max
m
capacity of the can = 15 L
∴ The maximum capacity of the can is 15 L
mark me as brainliest ok